【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若函數(shù)上是減函數(shù),求實(shí)數(shù)a的最小值;

)若,使)成立,求實(shí)數(shù)a的取值范圍.

【答案】(1) 單調(diào)減區(qū)間是,增區(qū)間是;(2); (3)

【解析】

試題(1) 根據(jù)原函數(shù)在區(qū)間上的單調(diào)遞減轉(zhuǎn)化為導(dǎo)數(shù)在該區(qū)間內(nèi)小于等于零恒成立,再把恒成立轉(zhuǎn)化為最值求解,在求解的過(guò)程中利用了二次三項(xiàng)式的配方;(2)命題的等價(jià)變換是解決本小題的關(guān)鍵,使成立等價(jià)于 當(dāng)時(shí),有,于是整個(gè)問(wèn)題就化為求函數(shù)的最值,然后利用導(dǎo)數(shù)分析單調(diào)性,進(jìn)而求最值。

試題解析:由已知函數(shù)的定義域均為,.

(1)函數(shù), 2

f(x)上為減函數(shù),故上恒成立.

所以當(dāng)時(shí),

,

故當(dāng),即時(shí),

所以于是,故a的最小值為6

(2)命題使成立等價(jià)于 當(dāng)時(shí),有

由(),當(dāng)時(shí),,

問(wèn)題等價(jià)于:當(dāng)時(shí),有8

當(dāng)時(shí),由(),上為減函數(shù),

=,故10

當(dāng)時(shí),由于 上為增函數(shù),

的值域?yàn)?/span>,即

的單調(diào)性和值域知,唯一,使,且滿足:

當(dāng)時(shí),,為減函數(shù);

當(dāng)時(shí),,為增函數(shù);

所以,=,

所以,,與矛盾,不合題意. 11

綜上,得12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某地某年月平均氣溫(華氏度):

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均氣溫

21.4

26.0

36.0

48.8

59.1

68.6

73.0

71.9

64.7

53.5

39.8

27.7

以月份為x軸(月份),以平均氣溫為y.

1)用正弦曲線去擬合這些數(shù)據(jù);

2)估計(jì)這個(gè)正弦曲線的周期T和振幅A;

3)下面三個(gè)函數(shù)模型中,哪一個(gè)最適合這些數(shù)據(jù)?

;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的個(gè)數(shù)是:( )

①對(duì)于兩個(gè)分類變量的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷“有關(guān)系”的把握程度越大;

②在相關(guān)關(guān)系中,若用擬合時(shí)的相關(guān)指數(shù)為,用擬合時(shí)的相關(guān)指數(shù)為,且,則的擬合效果好;

③利用計(jì)算機(jī)產(chǎn)生之間的均勻隨機(jī)數(shù),則事件“”發(fā)生的概率為

④“”是“”的充分不必要條件

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,且取相等的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),設(shè)點(diǎn)

()將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;

()設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)甲,乙兩種圖畫紙,計(jì)劃每種圖畫紙的生產(chǎn)量不少于8t,已知生產(chǎn)甲種圖畫紙1t要用蘆葦7t、黃麻3t、楓樹(shù)5t;生產(chǎn)乙種圖畫紙1t要用蘆葦3t、黃麻4t、楓樹(shù)8 t.現(xiàn)在倉(cāng)庫(kù)內(nèi)有蘆葦300t、黃麻150t.楓樹(shù)200t,試列出滿足題意的不等式組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(dòng)(按逆時(shí)針?lè)较?3圈,當(dāng)水輪上點(diǎn)從水中浮現(xiàn)時(shí)開(kāi)始計(jì)時(shí),即從圖中點(diǎn)開(kāi)始計(jì)算時(shí)間.

(1)當(dāng)秒時(shí)點(diǎn)離水面的高度_________;

(2)將點(diǎn)距離水面的高度(單位: )表示為時(shí)間(單位: )的函數(shù),則此函數(shù)表達(dá)式為_______________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長(zhǎng)交拋物線于點(diǎn),若是線段的中點(diǎn),則雙曲線的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),已知,

1)若函數(shù),求的值;

2)當(dāng)時(shí),求證:函數(shù)上是單調(diào)遞增函數(shù);

3)若對(duì)于一切,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案