已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時(shí),求集合A∩B(∁RA)∩B;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專(zhuān)題:集合
分析:(1)求出A中不等式的解集確定出A,把m的值代入B確定出B,求出A與B的交集,找出A補(bǔ)集與B的交集即可;
(2)由題意得到B為A的子集,分B為空集與不為空集兩種情況求出m的范圍即可.
解答: 解:(1)由A中不等式解得:-2<x<5,即A={x|-2<x<5},
當(dāng)m=3時(shí),B中不等式為4≤x≤5,即B={x|4≤x≤5},
∴A∩B={x|4≤x<5},∁RA={x|x≤-2或x≥5},
則(∁RA)∩B={5};
(2)∵A∩B=B,∴B⊆A,
①當(dāng)B=∅時(shí),m+1>2m-1,即m<2,此時(shí)B⊆A;
②當(dāng)B≠∅時(shí),
m+1≤2m+1
m+1>-2
2m-1<5
,即2≤m<3,此時(shí)B⊆A,
綜上所述,m的取值范圍是{m|2≤m<3}.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x2-4x+7的值域是( 。
A、{y|y∈R}
B、{y|y≥3}
C、{y|y≥7}
D、{y|y>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
4
5
,求α的其它三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿(mǎn)足iz=1+2i,則在復(fù)平面內(nèi),z的共軛復(fù)數(shù)
z
對(duì)應(yīng)的點(diǎn)所在象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx+cosx+
1
1+|sin2x|
的最大值等于
 
,最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=1-2sin2(x+
π
4
),則f(
π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,已知A(4,3),試在x軸上求一點(diǎn)P,使
OP
AP
的值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+1+x 
1
2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
3
,EF=2.
(1)求證:AE∥平面DCF;
(2)EF⊥平面DCE;
(3)當(dāng)AB的長(zhǎng)為何值時(shí),二面角A-EF-C的大小為60°?

查看答案和解析>>

同步練習(xí)冊(cè)答案