設(shè)x,y都是正數(shù),且2x+y=1,則
1
x
+
1
y
的最小值是( 。
A、4
2
B、3
2
C、2+3
2
D、3+2
2
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵x,y都是正數(shù),且2x+y=1,
1
x
+
1
y
=(2x+y)(
1
x
+
1
y
)
=3+
y
x
+
2x
y
≥3+2
y
x
2x
y
=3+2
2
,當(dāng)且僅當(dāng)y=
2
x=
2
-1時(shí)取等號(hào).
因此
1
x
+
1
y
的最小值是3+2
2

故選:D.
點(diǎn)評(píng):本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC和△DBC是兩個(gè)有公共斜邊的直角三角形,并且AB=AD=AC=2a,CD=
6
a.
(1)若P是AC邊上的一點(diǎn),當(dāng)△PBD的面積最小時(shí),求二面角P-BD-A的平面角的正切值;
(2)能否找到一個(gè)球,使A,B,C,D都在該球面上,若不能,請(qǐng)說明理由;若能,求該球的內(nèi)接圓柱的表面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2.
(Ⅰ)若C=
π
3
,且△ABC的面積等于
3
,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(lgx)=x,則f(3)=( 。
A、103
B、3
C、lg3
D、310

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)
1-sin2440°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下幾個(gè)結(jié)論,其中正確結(jié)論的個(gè)數(shù)為( 。
(1)將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均數(shù)與標(biāo)準(zhǔn)差均沒有變化;
(2)在線性回歸分析中,相關(guān)系數(shù)r越小,表明兩個(gè)變量相關(guān)越弱;
(3)直線l垂直于平面α的充要條件是l垂直于平面α內(nèi)的無數(shù)條直線;
(4)某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,剛樣本容量為15.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-|x|的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三國(guó)時(shí)期趙爽在《勾股方圓圖注》中對(duì)勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為“(  )”的幾何解釋.
A、如果a>b,b>c,那么a>c
B、如果a>b>0,那么a2>b2
C、對(duì)任意實(shí)數(shù)a和b,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立
D、如果a>b,c>0那么ac>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|x<6},則下列關(guān)系式錯(cuò)誤的是(  )
A、0∈AB、1.5∉A
C、-1∉AD、6∈A

查看答案和解析>>

同步練習(xí)冊(cè)答案