在△ABC中,分別是,的中點(diǎn),且,若恒成立,則的最小值為( )
A. | B. | C. | D. |
A
解析試題分析:如圖所示:
∵3AB=2AC,∴AC=AB,
又E、F分別為AC、AB的中點(diǎn),
∴AE=AC,AF=AB,
∴在△ABE中,由余弦定理得:BE2=AB2+AE2-2AB•AE•cosA
=AB2+(AB)2-2AB•AB•cosA=AB2-AB2cosA,
在△ACF中,由余弦定理得:CF2=AF2+AC2-2AF•AC•cosA
=(AB)2+(AB)2-2•AB•AB•cosA=AB2-AB2cosA,
∴=,
∴=.
∵當(dāng)cosA取最小值時,最大,
∴當(dāng)A→π時,cosA→-1,此時 達(dá)到最大值,最大值為 ,
故 恒成立,t的最小值為.選A.
考點(diǎn):余弦定理,余弦函數(shù)的性質(zhì),不等式恒成立問題。
點(diǎn)評:中檔題,不等式恒成立問題,往往通過“分離參數(shù)”,轉(zhuǎn)化成求函數(shù)的最值問題,解答本題的關(guān)鍵是,熟練掌握余弦定理,利用余弦定理建立三角形的邊角關(guān)系。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知單位向量滿足,其中k>0,記函數(shù)f()=,,當(dāng)f()取得最小值時,與向量垂直的向量可以是
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在四邊形ABCD中,若,且,則( )
A.ABCD是矩形 | B.ABCD是正方形 |
C.ABCD是菱形 | D.ABCD是平行四邊形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com