A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
分析 由題意可得2φ+$\frac{π}{3}$=2kπ-2φ+$\frac{π}{3}$,k∈Z,即φ=$\frac{kπ}{2}$,由此求得φ的最小值.
解答 解:將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向左平移φ(φ>0)個單位可得y=sin[2(x+φ)+$\frac{π}{3}$]=sin(2x+2φ+$\frac{π}{3}$)的圖象,
將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移φ(φ>0)個單位可得y=sin[2(x-φ)+$\frac{π}{3}$]=sin(2x-2φ+$\frac{π}{3}$)的圖象,
再根據(jù)所得圖象恰好重合,可得所得圖象恰好相差周期的整數(shù)倍,即2φ+$\frac{π}{3}$=2kπ-2φ+$\frac{π}{3}$,k∈Z,
即 φ=$\frac{kπ}{2}$,取k=1,可得φ的最小正值為$\frac{π}{2}$,
故選:C.
點(diǎn)評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,f(x0)=0或g(x0)=0 | B. | ?x0∈R,f(x0)=0且g(x0)=0 | ||
C. | ?x∈R,f(x)=0或g(x)=0 | D. | ?x∈R,f(x)=0且g(x)=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {1,2,3} | C. | {0,1} | D. | {1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±2x | B. | y=±$\frac{1}{2}$x | C. | y=±$\frac{\sqrt{5}}{2}$x | D. | y=±$\sqrt{5}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$) | B. | (0,$\frac{1}{e}$) | C. | (-∞,e) | D. | (e,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com