【題目】為提高市場(chǎng)銷售業(yè)績(jī),某公司設(shè)計(jì)兩套產(chǎn)品促銷方案(方案1運(yùn)作費(fèi)用為元/件;方案2的的運(yùn)作費(fèi)用為元/件),并在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,分別統(tǒng)計(jì)相應(yīng)營(yíng)銷網(wǎng)點(diǎn)個(gè)數(shù),制作相應(yīng)的列聯(lián)表如下表所示.

無促銷活動(dòng)

采用促銷方案1

采用促銷方案2

本年度平均銷售額不高于上一年度平均銷售額

48

11

31

90

本年度平均銷售額高于上一年度平均銷售額

52

69

29

150

100

80

60

(Ⅰ)請(qǐng)根據(jù)列聯(lián)表提供的信息,為該公司今年選擇一套較為有利的促銷方案(不必說明理由);

(Ⅱ)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的組售價(jià)(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:

售價(jià)

銷量

(ⅰ)請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;

(ⅱ)根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤(rùn)可以達(dá)到最大.

參考公式:相關(guān)指數(shù)

【答案】(Ⅰ)見解析;(Ⅱ)(。進(jìn)行擬合最為合適.(ⅱ)

【解析】試題分析:(Ⅰ)由列聯(lián)表信息可知,年度平均銷售額與方案的運(yùn)作相關(guān)性強(qiáng)于方案

(Ⅱ)(。┯梢阎獢(shù)據(jù)可知,經(jīng)過計(jì)算可得,即可選擇采用回歸模型進(jìn)行擬合最為合適.

(ⅱ)由(Ⅰ)可知,采用方案的運(yùn)作效果較方案好,求得當(dāng)售價(jià)時(shí),利潤(rùn)達(dá)到最大.

試題解析:(Ⅰ)由列聯(lián)表信息可知,年度平均銷售額與方案的運(yùn)作相關(guān)性強(qiáng)于方案

(Ⅱ)(。┯梢阎獢(shù)據(jù)可知,回歸模型對(duì)應(yīng)的相關(guān)指數(shù);

回歸模型對(duì)應(yīng)的相關(guān)指數(shù);

回歸模型對(duì)應(yīng)的相關(guān)指數(shù)

因?yàn)?/span>,所以采用回歸模型進(jìn)行擬合最為合適.

(ⅱ)由(Ⅰ)可知,采用方案的運(yùn)作效果較方案好,

故年利潤(rùn),

當(dāng)時(shí), 單調(diào)遞增;

當(dāng)時(shí), 單調(diào)遞減.

故當(dāng)售價(jià)時(shí),利潤(rùn)達(dá)到最大

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓錐和圓柱的組合體(它們的底面重合),圓錐的底面圓半徑為 為圓錐的母線, 為圓柱的母線, 為下底面圓上的兩點(diǎn),且, , .

(1)求證:平面平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,曲線軸負(fù)半軸交于點(diǎn),直線相切于 上任意一點(diǎn), 上的射影, 的中點(diǎn).

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)軌跡軸交于,點(diǎn)為曲線上的點(diǎn),且, ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 ,
(Ⅰ)求sinB的值;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車入住泉州一周年以來,因其“綠色出行,低碳環(huán)保”的理念而備受人們的喜愛,值此周年之際,某機(jī)構(gòu)為了了解共享單車使用者的年齡段,使用頻率、滿意度等三個(gè)方面的信息,在全市范圍內(nèi)發(fā)放份調(diào)查問卷,回收到有效問卷份,現(xiàn)從中隨機(jī)抽取份,分別對(duì)使用者的年齡段、~歲使用者的使用頻率、~歲使用者的滿意度進(jìn)行匯總,得到如下三個(gè)表格:

(Ⅰ)依據(jù)上述表格完成下列三個(gè)統(tǒng)計(jì)圖形:

(Ⅱ)某城區(qū)現(xiàn)有常住人口萬,請(qǐng)用樣本估計(jì)總體的思想,試估計(jì)年齡在歲~歲之間,每月使用共享單車在~次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是(
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解不等式: ≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱臺(tái)的上、下底面的邊長(zhǎng)分別是3和6.
(1)若側(cè)面與底面所成的角為60°,求此三棱臺(tái)的體積;
(2)若側(cè)棱與底面所成的角為60°,求此三棱臺(tái)的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案