19.三名學(xué)生相鄰坐成一排,每個學(xué)生面前的課桌上放著一枚完全相同的硬幣,三人同時拋擲自己的硬幣.若硬幣正面朝上,則這個人站起來;若硬幣正面朝下,則這個人繼續(xù)坐著,那么,沒有相鄰的兩個人站起來的概率為( 。
A.$\frac{1}{2}$B.$\frac{5}{8}$C.$\frac{1}{4}$D.$\frac{3}{8}$

分析 沒有相鄰的兩個人站起來,從而只有一枚硬幣正面向上或沒有硬幣正面向上,由此能求出沒有相鄰的兩個人站起來的概率.

解答 解:∵沒有相鄰的兩個人站起來,
∴只有一個人站起來或沒有人站起來,即只有一枚硬幣正面向上或沒有硬幣正面向上,
∴沒有相鄰的兩個人站起來的概率為:
p=${C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}+{C}_{3}^{3}(\frac{1}{2})^{3}$=$\frac{1}{2}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意n次獨立重復(fù)試驗中事件A恰好發(fā)生k次的概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},則M∩(∁UN)=( 。
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若A(1,3,-2)、B(-2,3,2),則A、B兩點間的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點A(1,-1),B(3,2),C(5,0),求點D的坐標(biāo),使直線CD⊥AB,且BC∥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在底面為梯形的四棱錐S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(1)求證:AC⊥SD;
(2)求點B到平面SAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等比數(shù)列{an}的首項為$\frac{3}{2}$,公比為-$\frac{1}{2}$,前n項和為Sn,則當(dāng)n∈N*時,Sn-$\frac{1}{{S}_{n}}$的最大值與最小值之和為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=ex-ax有兩個零點x1,x2,且x1<x2則下列命題中正確的有①②④(填上你認(rèn)為正確的所有序號)
①a>e
②x1+x2>2 
③x1x2>1 
④有極小值點x0,且x1+x2<2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知復(fù)數(shù)$z=3+\frac{3-4i}{4+3i}$,則$\overline z$=( 。
A.3+5iB.3+iC.3-iD.3-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2017(x)=( 。
A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx

查看答案和解析>>

同步練習(xí)冊答案