【題目】已知函數(shù),若,則函數(shù)的零點(diǎn)個(gè)數(shù)為________;若函數(shù)4個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_______.

【答案】2

【解析】

當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可判定其頂點(diǎn)處恰好為零點(diǎn)位置;

分類討論時(shí),由對(duì)勾函數(shù)的性質(zhì)確定頂點(diǎn)位置,條件需有4個(gè)零點(diǎn)等價(jià)轉(zhuǎn)換為頂點(diǎn)值小于4,進(jìn)而構(gòu)建不等式解得范圍;時(shí)不成立;時(shí),由對(duì)勾函數(shù)的性質(zhì)確定頂點(diǎn)位置其在x軸處,都成立,最后綜上總結(jié)即可.

當(dāng)時(shí),,由對(duì)勾函數(shù)的性質(zhì)易得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以函數(shù)的零點(diǎn)個(gè)數(shù)為2個(gè).

當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)易得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

要使4個(gè)零點(diǎn),則有,解得;

當(dāng)時(shí),,易知此時(shí)函數(shù)2個(gè)零點(diǎn),不符合題意;

當(dāng)時(shí),函數(shù),當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以此時(shí)函數(shù)4個(gè)零點(diǎn),

綜上所述,實(shí)數(shù)的取值范圍為.

故答案為:2;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C:的離心率為,其右焦點(diǎn)到橢圓C外一點(diǎn)的距離為,不過原點(diǎn)O的直線l與橢圓C相交于A,B兩點(diǎn),且線段AB的長(zhǎng)度為2.

1求橢圓C的方程;

2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,并且經(jīng)過點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程;

2)一條斜率為的直線交橢圓于,兩點(diǎn)(不同于),直線的斜率分別為,,滿足,試判斷直線是否經(jīng)過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中是實(shí)常數(shù).

1)若,求的取值范圍;

2)若,求證:函數(shù)的零點(diǎn)有且僅有一個(gè);

3)若,設(shè)函數(shù)的反函數(shù)為,若是公差的等差數(shù)列且均在函數(shù)的值域中,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾志成城,抗擊疫情,一方有難,八方支援,在此次抗擊疫情過程中,各省市都派出援鄂醫(yī)療隊(duì). 假設(shè)汕頭市選派名主任醫(yī)生,名護(hù)士,組成三個(gè)醫(yī)療小組分配到湖北甲、乙、丙三地進(jìn)行醫(yī)療支援,每個(gè)小組包括名主任醫(yī)生和名護(hù)士,則不同的分配方案有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為新四大發(fā)明之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),帶給人們新的出行體驗(yàn),某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了解公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),設(shè)月份代碼為x,市場(chǎng)占有率為y%),得結(jié)果如下表

年月

2019.11

2019.12

2020.1

2020.2

2020.3

2020.4

x

1

2

3

4

5

6

y

9

11

14

13

18

19

1)觀察數(shù)據(jù),可用線性回歸模型擬合yx的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明(精確到0.001);

2)求y關(guān)于x的線性回歸方程,并預(yù)測(cè)該公司20206月份的市場(chǎng)占有率;

3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車投入市場(chǎng),現(xiàn)有采購(gòu)成本分別為1000/輛和800/輛的甲、乙兩款車型,報(bào)廢年限不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命統(tǒng)計(jì)如下表:

報(bào)廢年限

車輛數(shù)

車型

1

2

3

4

總計(jì)

甲款

10

40

30

20

100

乙款

15

35

40

10

100

經(jīng)測(cè)算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購(gòu)哪款車型?

參考數(shù)據(jù):,,.

參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面為菱形,,,的中點(diǎn),上一點(diǎn),且,若.

1)求證:平面;

2)求證:平面;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面ABCD,,,.

1)求證:平面PAD;

2)若EPC的中點(diǎn),求直線BE與平面PAD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是國(guó)家統(tǒng)計(jì)局于202019日發(fā)布的201812月到201912月全國(guó)居民消費(fèi)價(jià)格的漲跌幅情況折線圖.(注:同比是指本期與同期作對(duì)比;環(huán)比是指本期與上期作對(duì)比.如:20192月與20182月相比較稱同比,20192月與20191月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是(

A.201912月份,全國(guó)居民消費(fèi)價(jià)格環(huán)比持平

B.201812月至201912月全國(guó)居民消費(fèi)價(jià)格環(huán)比均上漲

C.201812月至201912月全國(guó)居民消費(fèi)價(jià)格同比均上漲

D.201811月的全國(guó)居民消費(fèi)價(jià)格高于201712月的全國(guó)居民消費(fèi)價(jià)格

查看答案和解析>>

同步練習(xí)冊(cè)答案