4.已知$\overrightarrow{a}$=(2,0),$\overrightarrow$=(-1,3),則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的坐標(biāo)分別為(  )
A.(3,3),(3,-3)B.(3,3),(1,-3)C.(1,3),(3,3)D.(1,3),(3,-3)

分析 根據(jù)向量的坐標(biāo)運(yùn)算的法則計算即可.

解答 解:$\overrightarrow{a}$=(2,0),$\overrightarrow$=(-1,3),
則$\overrightarrow{a}$+$\overrightarrow$=(2,0)+(-1,3)=(1,3)
$\overrightarrow{a}$-$\overrightarrow$=(2,0)-(-1,3)=(3,-3),
故選:D

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算的法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(n+1)^{2}-1}$的值為( 。
A.$\frac{n+1}{2(n+2)}$B.$\frac{3}{4}$-$\frac{n+1}{2(n+2)}$C.$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)D.$\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖是一個幾何體的正視圖和俯視圖.
(1)試判斷該幾何體是什么幾何體?(不用說明理由)
(2)請在正視圖的正右邊畫出其側(cè)視圖,并求該平面圖形的面積;
(3)求出該幾何體的體積與表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.計算定積分$\int_{-1}^1{|{x^2}-x|dx=}$1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.集合A={x|x是平面內(nèi)的三角形},B={x|x是平面內(nèi)的矩形},C={x|x是平面內(nèi)的圓},D={x|x>0},給出下列關(guān)系:
①f:A→C,作三角形的內(nèi)切圓;
②f:C→B,作圓的內(nèi)接矩形;
③f:A→C,作三角形的外接圓;
④f:C→A,作圓的內(nèi)接三角形;
⑤f:B→D,求矩形的對角線長;
⑥f:C→D,求圓的周長;
其中不是映射的序號為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若a=1,求方程f(x)=g(x)的解;
(2)若方程f(x)=g(x)有兩解,求出實(shí)數(shù)a的取值范圍;
(3)若a>0,記F(x)=g(x)f(x),試求函數(shù)y=F(x)在區(qū)間[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計算
(1)若 A={x|x>1},B={x|-2<x<2},C={x|-3<x<5},求(A∪B)∩C.
(2)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-9.6)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(1.5)^{-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(m2-m-1)x-5m-3,m為何值時,f(x):
(1)是冪函數(shù);
(2)是正比例函數(shù);
(3)是反比例函數(shù);
(4)是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.《九章算術(shù)》商功章有題:一圓柱形谷倉,高1丈3尺,容納米1950斛(1丈=10尺,斛為容積單位,1斛≈1.62立方尺,π≈3),則圓柱底面周長約為54尺.

查看答案和解析>>

同步練習(xí)冊答案