已知函數(shù)f(x)=
1
x-1
的定義域?yàn)榧螦,函數(shù)g(x)=(
1
2
x(-1≤x≤0)的值域?yàn)榧螧,U=R.
(1)求(∁UA)∩B;
(2)若C={x|a≤x≤2a-1}且C⊆B,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算,集合的包含關(guān)系判斷及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:(1)由函數(shù)f(x)的解析式求出定義域A,由補(bǔ)集的運(yùn)算求出∁UA,再由指數(shù)函數(shù)的性質(zhì)求出函數(shù)g(x)的值域B,再由交集的運(yùn)算求出(∁UA)∩B;
(2)根據(jù)子集的定義和條件對(duì)集合B分B=∅和B≠∅兩種情況,分別列出不等式組求出a的范圍.
解答: 解:(1)要是函數(shù)f(x)=
1
x-1
有意義,則x-1>0,得x>1,
所以函數(shù)f(x)的定義域A=(1,+∞),則∁UA=(-∞,1],
由-1≤x≤0得,1≤(
1
2
)
x
≤2
,則函數(shù)g(x)的值域B=[1,2],
所以(∁UA)∩B={1};…(5分)
(2)因?yàn)镃={x|a≤x≤2a-1}且C⊆B,
所以對(duì)集合B分B=∅和B≠∅兩種情況,
則a>2a-1或
a≤2a-1
2a-1≤2
a≥1
,解得a<1或1≤a≤
3
2
,
所以實(shí)數(shù)a的取值范圍是(-∞,
3
2
]…(10分)
點(diǎn)評(píng):本題考查補(bǔ)、交、并的混合運(yùn)算,由集合之間的關(guān)系求出參數(shù)的范圍,及指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sinx與函數(shù)y=cosx線性組合構(gòu)成的函數(shù)f(x)=msinx+ncosx(m,n是常數(shù))稱為“優(yōu)美函數(shù)”.
(Ⅰ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,當(dāng)m=
e
1
1
x
dx,n=|1+
2
i
|(i為虛數(shù)單位)時(shí),
角A對(duì)應(yīng)的“優(yōu)美函數(shù)”函數(shù)值f(A)=2,若a=2,c=
3
b,求△ABC的面積;
(Ⅱ)對(duì)于(Ⅰ)中的“優(yōu)美函數(shù)”f(x),若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,2)
,
b
=(2,3)
,若
m
a
+
b
n
=
a
-
b
共線,則實(shí)數(shù)λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出下列各函數(shù)的圖象:
(1)y=2x+1,x∈{-1,0,1,2,3};
(2)y=2-x,x∈[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在R上的奇函數(shù)且x>0時(shí),f(x)=2x2-x+3,則當(dāng)x<0時(shí),f(x)的解析式為( 。
A、2x2-x+3
B、-2x2+x-3
C、2x2+x+3
D、-2x2-x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin11°、cos10°、sin168°的大小關(guān)系是
 
.(用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2,則a4=( 。
A、-7B、-9C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求y=
x2+7x+10
x+1
(x>-1)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐S-ABCD中,∠DAB=∠ABC=90°,側(cè)棱SA⊥底面AC,SA=AB=BC=1,AD=2,求二面角A-SD-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案