【題目】已知函數(shù)(其中為常數(shù))

1)求的單調(diào)增區(qū)間;

2)若時(shí),的最大值為,求的值;

3)求取最大值時(shí)的取值集合.

【答案】1.(2a1.(3{x|x}

【解析】

1)令 22x2,kz,求出x的范圍,即可求出fx)的單調(diào)增區(qū)間.

2)根據(jù)x的范圍求出2x的范圍,即可求得sin2x)的范圍,根據(jù)fx)的最大值為2+a+14,求出a的值.

3)由相位的終邊落在y軸正半軸上求得使fx)取最大值時(shí)x的取值集合.

1)令 22x2,kz,可得 x,kz,

故函數(shù)的增區(qū)間為:

2)當(dāng)x[0,]時(shí),2x,sin2x≤1,

fx)的最大值為2+a+14,解得a1

3)當(dāng)2x,即x時(shí),fx)取最大值,

∴使fx)取最大值時(shí)x的取值集合為{x|x}

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】編號(hào)分別為16名籃球運(yùn)動(dòng)員在某次訓(xùn)練比賽中的得分記錄如下:

運(yùn)動(dòng)員編號(hào)

得分

15

35

21

28

25

36

18

34

運(yùn)動(dòng)員編號(hào)

得分

17

26

25

33

22

12

31

38

(1)將得分在對(duì)應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格:

區(qū)間

[10,20

[20,30)

[30,40]

人數(shù)

(2)從得分在區(qū)間[20,30)內(nèi)的運(yùn)動(dòng)員中隨機(jī)抽取2.

()用運(yùn)動(dòng)員編號(hào)列出所有可能的抽取結(jié)果;

()求這2人得分之和大于50的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,焦點(diǎn)在軸上的橢圓經(jīng)過(guò)點(diǎn),其中為橢圓的離心率.過(guò)點(diǎn)作斜率為的直線(xiàn)交橢圓兩點(diǎn)(軸下方).

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)且平行于的直線(xiàn)交橢圓于點(diǎn) ,求的值;

(3)記直線(xiàn)軸的交點(diǎn)為.若,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,與平面所成角的正弦值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在實(shí)數(shù)集中,定義兩個(gè)實(shí)數(shù)、的運(yùn)算法則△如下:若,則,若,則.

1)請(qǐng)分別計(jì)算的值;

2)對(duì)于實(shí)數(shù),判斷是否恒成立,并說(shuō)明理由;

3)求函數(shù)的解析式,其中,并求函數(shù)的最值.(符號(hào)表示相乘)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時(shí),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

存在實(shí)數(shù)x,使得sin x+cos x=2;

②函數(shù)y=cos是奇函數(shù);

③若角α,β是第一象限角,且αβ,則tan α<tan β

④函數(shù)y=sin的圖象關(guān)于點(diǎn)(,0)成中心對(duì)稱(chēng).

⑤直線(xiàn)x=是函數(shù)y=sin圖象的一條對(duì)稱(chēng)軸;

其中正確的命題是(   ).

A.②④B.①③C.①④D.②⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬(wàn)元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬(wàn)元,年產(chǎn)量為)件.當(dāng)時(shí),年銷(xiāo)售總收人為()萬(wàn)元;當(dāng)時(shí),年銷(xiāo)售總收人為萬(wàn)元.記該工廠生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得的年利潤(rùn)為萬(wàn)元.(年利潤(rùn)=年銷(xiāo)售總收入一年總投資)

(1)(萬(wàn)元)()的函數(shù)關(guān)系式;

(2)當(dāng)該工廠的年產(chǎn)量為多少件時(shí),所得年利潤(rùn)最大?最大年利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,某單位采用新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品。已知該單位每月的處理量最多不超過(guò)300噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系式可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元。

1)該單位每月處理量為多少?lài)崟r(shí),才能使每噸的平均處理成本最低?

2)要保證該單位每月不虧損,則每月處理量應(yīng)控制在什么范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案