【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上,O為坐標(biāo)原點(diǎn).
Ⅰ求橢圓C的方程;
Ⅱ設(shè)動直線l與橢圓C有且僅有一個公共點(diǎn),且l與圓的相交于不在坐標(biāo)軸上的兩點(diǎn),,記直線,的斜率分別為,,求證:為定值.
【答案】(Ⅰ) (Ⅱ)
【解析】
(I)根據(jù)橢圓的離心率和橢圓上的一點(diǎn),列方程組,求解出點(diǎn)的值,從而求得橢圓方程.(II)首先對斜率不存在的情況進(jìn)行分析,求得兩直線斜率之積.當(dāng)直線斜率存在時,設(shè)出直線的方程,聯(lián)立直線方程和橢圓方程,利用判別式為零求得參數(shù)的相互關(guān)系.聯(lián)立直線方程和圓的方程,寫出韋達(dá)定理,由此計(jì)算出的值,從而證明為定值.
解:Ⅰ由已知得:,解得:,,,
所以橢圓C的方程為:;
Ⅱ當(dāng)直線l的斜率不存在時,由題意知l的方程為,
易得直線,的斜率之積,
當(dāng)直線l的斜率存在時,設(shè)l的方程為,
由方程組,得:,
因?yàn)橹本l與橢圓C有且只有一個公共點(diǎn),
所以,即,
由方程組,得,
設(shè),,則,,
所以,
將代入上式,得,
綜上,為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0、2、4中取一個數(shù)字,從1、3、5中取兩個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),則所有不同的三位數(shù)的個數(shù)是______(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項(xiàng)作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某產(chǎn)品1到6月份銷售量及其價格進(jìn)行調(diào)查,其售價x和銷售量y之間的一組數(shù)據(jù)如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
單價(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)1至5月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5元/件,為獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.華為公司研發(fā)的5G技術(shù)是中國在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個中國人的驕傲.現(xiàn)假設(shè)在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號是_______.
①甲線路只能輸送第四種數(shù)據(jù)包;
②乙線路不能輸送第二種數(shù)據(jù)包;
③丙線路可以不輸送第三種數(shù)據(jù)包;
④丁線路可以輸送第三種數(shù)據(jù)包;
⑤戊線路只能輸送第四種數(shù)據(jù)包.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線.
(1)若拋物線和直線沒有公共點(diǎn),求的取值范圍;
(2)若,且拋物線和直線只有一個公共點(diǎn)時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校書店新進(jìn)了一套精品古典四大名著:《紅樓夢》、《三國演義》、《西游記》、《水滸傳》共四本書,每本名著數(shù)量足夠多,今有五名同學(xué)去書店買書,由于價格較高,五名同學(xué)打算每人只選擇一本購買.
(1)求“每本書都有同學(xué)買到”的概率;
(2)求“對于每個同學(xué),均存在另一個同學(xué)與其購買的書相同”的概率;
(3)記X為五位同學(xué)購買相同書的個數(shù)的最大值,求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的圖象向左平移1個單位后關(guān)于y軸對稱,當(dāng)x2>x1>1時,[f(x2)﹣f(x1)](x2﹣x1)<0恒成立,設(shè)a=f(),b=f(2),c=f(3),則a、b、c的大小關(guān)系為( 。
A.c>a>bB.c>b>aC.a>c>bD.b>a>c
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com