8.某三棱錐的三視圖如圖所示,則俯視圖的面積為( 。
A.2B.$\frac{5}{2}$C.3D.4

分析 由題意,俯視圖的上、下底、高分別為1,2,2,可得面積.

解答 解:由題意,俯視圖的上、下底、高分別為1,2,2,其面積為$\frac{1+2}{2}×2$=3,
故選C.

點(diǎn)評(píng) 本題考查三視圖,考查俯視圖的面積,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,邊長(zhǎng)為3的正方形中有一張封閉的曲線圍成的笑臉.在正方形內(nèi)隨機(jī)撒一粒豆子,它落在笑臉區(qū)域的概率為$\frac{2}{3}$,則笑臉區(qū)域的面積為(  )
A.4B.$\frac{2}{3}$C.6D.無(wú)法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的三個(gè)判斷:
①y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];  
②點(diǎn)(k,0)是y=f(x)的圖象的對(duì)稱中心,其中k∈Z;
③函數(shù)y=f(x)在($\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù).
則上述判斷中所有正確的序號(hào)是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如表所示:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(h)2.5344.5
($\widehat{a}=\overline{y}-\widehat\overline{x}$,$\widehat=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$)
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅲ)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某班共有50名學(xué)生,通過(guò)調(diào)查發(fā)現(xiàn)有30人同時(shí)在張老師和王老師的朋友圈,只有1人不在任何一個(gè)老師的朋友圈,且張老師的朋友圈比王老師的朋友圈多7人,則張老師的朋友圈有43人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)判斷函數(shù)g(x)=1-$\frac{2}{{{a^x}+1}}$的奇偶性;
(2)解不等式log${\;}_{\frac{1}{3}}$(x-1)>log${\;}_{\frac{1}{3}}$(a-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在圓內(nèi)接四邊形ABCD中,AB=2,AD=1,$\sqrt{3}$BC=$\sqrt{3}$BDcosα+CDsinβ
(Ⅰ)求角β的大小
(Ⅱ)求四邊形ABCD周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,若在三棱柱ABC-A′B′C′中,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{AA′}$=$\overrightarrow{c}$,M是A′B的中點(diǎn),點(diǎn)N在CM上,且CN:NM=1:2,用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{CM}$、$\overrightarrow{C′N}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為( 。
A.內(nèi)切B.外切C.相交D.外離

查看答案和解析>>

同步練習(xí)冊(cè)答案