【題目】已知四棱錐中,四邊形是菱形, ,又平面,

點(diǎn)是棱的中點(diǎn), 在棱上,且.

(1)證明:平面平面

(2)若平面,求四棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:(1)由平面,可證,再由底面的菱形,且點(diǎn)是棱的中點(diǎn),可證,即可證明平面,再根據(jù)平面,即可證明平面平面;(2)連接,連接,得為平面與平面的交線,由平面,可證,根據(jù)底面是菱形,且點(diǎn)是棱的中點(diǎn),易得,則, ,可得四棱錐的高,根據(jù)梯形的面積,即可得四棱錐的體積.

試題解析:(1)證明:∵平面, 平面

,

又∵底面的菱形,且點(diǎn)是棱的中點(diǎn)

,

又∵

平面,

平面, 平面

∴平面平面.

(2)連接,連接,則平面平面,

平面

,

∵底面是菱形,且點(diǎn)是棱的中點(diǎn)

,

,

,

∵梯形的面積,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化妝品生產(chǎn)企業(yè)為了占有更多的市場(chǎng)份額,擬在2010年世博會(huì)期間進(jìn)行一系列促銷活動(dòng),經(jīng)過市場(chǎng)調(diào)查和測(cè)算,化妝品的年銷量x萬件與年促銷費(fèi)t萬元之間滿足3﹣x與t+1成反比例,如果不搞促銷活動(dòng),化妝品的年銷量只能是1萬件,已知2010年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件化妝品需要再投入32萬元的生產(chǎn)費(fèi)用,若將每件化妝品的售價(jià)定為:其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則當(dāng)年生產(chǎn)的化妝品正好能銷完.
(1)將2010年利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(2)該企業(yè)2010年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?
(注:利潤=銷售收入﹣生產(chǎn)成本﹣促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中, =(4,﹣2,3), =(﹣4,1,0), (﹣6,2,﹣8),則該四棱錐的高為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2﹣a2= bc,且b= a,則下列關(guān)系一定不成立的是(
A.a=c
B.b=c
C.2a=c
D.a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+(y﹣2)2=25及直線l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)求直線l與圓C所截得的弦長的最短長度及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象在處的切線為為自然對(duì)數(shù)的底數(shù))

(1)求的值;

(2)若,且對(duì)任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若直線與曲線都只有兩個(gè)交點(diǎn),證明:這四個(gè)交點(diǎn)可以構(gòu)成一個(gè)平行四邊形,并計(jì)算該平行四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案