已知命題p:x2-7x+10≤0,q:(x-a-1)(x+a-1)≤0(其中a>0).
(1)若a=2,命題“p且q”為真,求實數(shù)x的取值范圍;
(2)已知p是q的充分條件,求實數(shù)a的取值范圍.
考點:必要條件、充分條件與充要條件的判斷,復合命題的真假
專題:簡易邏輯
分析:(1)若a=2,命題“p且q”為真,則p,q同時為真,即可求實數(shù)x的取值范圍;
(2)已知p是q的充分條件,根據(jù)條件關系建立不等式關系即可,求實數(shù)a的取值范圍.
解答: 解:(1)p:x2-7x+10≤0?2≤x≤5,
若a=2,q:(x-a-1)(x+a-1)≤0?-1≤x≤3…(3分)
命題“p且q”為真,取交集,所以實數(shù)x的范圍為x∈[2,3];…(6分)
(2)p:x2-7x+10≤0?2≤x≤5,q:(x-a-1)(x+a-1)≤0?1-a≤x≤1+a,
若p是q的充分條件,則[2,5]⊆[1-a,1+a],…(9分)
1-a≤2
5≤1+a
-1≤a
4≤a
⇒4≤a
.…(12分)
點評:本題主要考查復合命題的真假關系的應用以及充分條件和必要條件的應用,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),且對于任意的x∈R,都有f(x+
π
2
)=f(x),若f(
π
3
)=1,則f(-
6
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知斜率為2的直線過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)左焦點F,且與雙曲線左右兩支分別交于A、B兩點,若A是線段BF的中點,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡f(x)=
sin(π-x)cos(2π-x)tan(-x+3π)
-tan(-x-π)sin(-
2
-x)

(2)若sin(x+
2
)=
1
5
,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,不是冪函數(shù)的是( 。
A、y=2x
B、y=x-1
C、y=
x
D、y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖程序框圖,如果輸出的函數(shù)值在區(qū)間(
1
9
,
1
3
)
內,那么輸入實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F2是橢圓
x2
25
+
y2
9
=1
的右焦點,點A(2,2)在橢圓內,點M是橢圓上一動點,求|MA|+|MF2|的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種細胞1min分裂一次,若不分裂就會死亡.分裂和死亡的概率各占
1
2
,現(xiàn)有2個細胞,2min時間后,有細胞存活的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一臺還可以用的機器由于使用的時間較長,它按不同的轉速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉的速率而變化,下表為抽樣試驗結果:
轉速x(轉/秒)1614128
每小時生產(chǎn)有缺陷的零件數(shù)y(件)11985
(1)畫出散點圖;    (2)如果y與x有線性相關的關系,求回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時的產(chǎn)品中有缺陷的零件最多為10個,那么機器的轉運速度應控制在什么范圍內?
參考公式:線性回歸方程系數(shù)公式開始
b
=
n
i=1
xiyi-n•
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
x.

查看答案和解析>>

同步練習冊答案