7.已知$\overrightarrow a,\overrightarrow b$為單位向量,其夾角為600,則$(2\overrightarrow a-\overrightarrow b)•\overrightarrow b$=0.

分析 根據(jù)平面向量的數(shù)量積運(yùn)算律展開計(jì)算即可.

解答 解:∵$\overrightarrow a,\overrightarrow b$為單位向量,其夾角為60°,
∴${\overrightarrow{a}}^{2}$=${\overrightarrow}^{2}$=1,$\overrightarrow{a}•\overrightarrow$=1×1×cos60°=$\frac{1}{2}$,
∴$(2\overrightarrow a-\overrightarrow b)•\overrightarrow b$=2$\overrightarrow{a}•\overrightarrow$-${\overrightarrow}^{2}$=1-1=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0且a≠1 ).若它們的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)向量$\overrightarrow{AB}=(1,2),\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,則實(shí)數(shù)t的值是(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在多項(xiàng)式(1+x+x2)(1-x)10的展開式中,x10項(xiàng)的系數(shù)是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)寫出命題p的否定?p,命題q的否定?q;
(2)若?p∨?q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某電腦公司有5名產(chǎn)品推銷員,其中工作年限與年推銷金額數(shù)據(jù)如下表:
推銷員編號(hào)12345
工作年限x(年)35679
推銷金額y(百萬元)23345
(1)請(qǐng)?jiān)谌鐖D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(3)若某推銷員工作年限為11年,試估計(jì)他的年推銷金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,四棱錐P  ABCD的底面ABCD是平行四邊形,BD=$\sqrt{2}$,PC=$\sqrt{7}$,PA=$\sqrt{5}$,∠CDP=90°,E、F分別是棱AD、PC的中點(diǎn).
(1)證明:EF∥平面PAB;
(2)求BD與PA所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題:
①若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
②隨機(jī)變量X服從正態(tài)分布N(1,2),則P(X<0)=P(X>2);
③若二項(xiàng)式${({x+\frac{2}{x^2}})^n}$的展開式中所有項(xiàng)的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
正確命題的序號(hào)為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.P為雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直線PF2交y軸于點(diǎn)A,則△AF1P的內(nèi)切圓半徑為( 。
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案