【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),

(2)若只有一個(gè)零點(diǎn),求

【答案】(1)見解析(2)

【解析】分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式,(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),沒有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.

詳解:(1)當(dāng)時(shí),等價(jià)于

設(shè)函數(shù),則

當(dāng)時(shí),,所以單調(diào)遞減

,故當(dāng)時(shí),,即

(2)設(shè)函數(shù)

只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)只有一個(gè)零點(diǎn)

(i)當(dāng)時(shí),,沒有零點(diǎn);

(ii)當(dāng)時(shí),

當(dāng)時(shí),;當(dāng)時(shí),

所以單調(diào)遞減,在單調(diào)遞增

的最小值

①若,即,沒有零點(diǎn);

②若,即只有一個(gè)零點(diǎn);

③若,即,由于,所以有一個(gè)零點(diǎn),

由(1)知,當(dāng)時(shí),,所以

有一個(gè)零點(diǎn),因此有兩個(gè)零點(diǎn)

綜上,只有一個(gè)零點(diǎn)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國(guó)成立70周年,某校黨支部舉辦了一場(chǎng)“我和我的祖國(guó)”知識(shí)競(jìng)賽,滿分100分,回收40份答卷,成績(jī)均落在區(qū)間內(nèi),將成績(jī)繪制成如下的頻率分布直方圖.

1)估計(jì)知識(shí)競(jìng)賽成績(jī)的中位數(shù)和平均數(shù);

2)從,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取5份答卷,再?gòu)膶?duì)應(yīng)的黨員中選出3位黨員參加縣級(jí)交流會(huì),求選出的3位黨員中有2位成績(jī)來自于分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , ,四邊形為矩形,平面平面, .

(Ⅰ)求證: 平面

(Ⅱ)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),;

(2)若只有一個(gè)零點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過切削,加工成一個(gè)體積盡可能大的正方體新工件,并使新工件的一個(gè)面落在原工作的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(diǎn)(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(1);

④若對(duì)于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對(duì)稱;

⑤對(duì)于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=[]

若曲線y= fx在點(diǎn)(1,處的切線與軸平行,a

x=2處取得極小值,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,將沿折起,使平面平面.

(1)證明:平面;

(2)求三棱錐的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案