精英家教網 > 高中數學 > 題目詳情

【題目】設f(x)是定義在(﹣π,0)∪(0,π)的奇函數,其導函數為f'(x),且 ,當x∈(0,π)時,f'(x)sinx﹣f(x)cosx<0,則關于x的不等式 的解集為(
A.
B. ??
C.
D.

【答案】B
【解析】解:設g(x)= , ∴g′(x)= ,
∵f(x)是定義在(﹣π,0)∪(0,π)上的奇函數,
故g(﹣x)= = =g(x)
∴g(x)是定義在(﹣π,0)∪(0,π)上的偶函數.
∵當0<x<π時,f′(x)sinx﹣f(x)cosx<0
∴g'(x)<0,
∴g(x)在(0,π)上單調遞減,
∴g(x)在(﹣π,0)上單調遞增.
∵f( )=0,
∴g( )= =0,
∵f(x)<2f( )sinx,
即g( )sinx>f(x);
① 當sinx>0時,即x∈(0,π),g( )> =g(x);
所以x∈( ,π);
②當sinx<0時,即x∈(﹣π,0)時,g( )=g(﹣ )< =g(x);
所以x∈(﹣ ,0);
不等式f(x)<2f( )sinx的解集為解集為(﹣ ,0)∪( ,π).
故選:B.
【考點精析】本題主要考查了利用導數研究函數的單調性的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若a,b 是函數 的兩個不同的零點,且a,b,-2 這三個數可適當排序后成等差數列,也可適當排序后成等比數列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:x∈R,x2+1>m;命題q:指數函數f(x)=(3﹣m)x是增函數.若“p∧q”為假命題且“p∨q”為真命題,則實數m的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣λ,且數列{bn}是單調遞增數列,則實數λ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D在邊BC的延長線上,且BC=2CD,AD= . (Ⅰ)求CD的長;
(Ⅱ)求sin∠BAD的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 在點(1,f(1))處的切線方程為x+y=2. (Ⅰ)求a,b的值;
(Ⅱ)若對函數f(x)定義域內的任一個實數x,都有xf(x)<m恒成立,求實數m的取值范圍.
(Ⅲ) 求證:對一切x∈(0,+∞),都有3﹣(x+1)f(x)> 成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a,b為正數,給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,(e為自然對數的底數,a,b∈R),若f(x)在x=0處取得極值,且x﹣ey=0是曲線y=f(x)的切線.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,設函數 ,若函數h(x)=g(x)﹣cx2為增函數,求實數c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來蓬勃發(fā)展新機遇,2016年雙11期間,某網絡購物平臺推銷了A,B,C三種商品,某網購者決定搶購這三種商品,假設該名網購者都參與了A,B,C三種商品的搶購,搶購成功與否相互獨立,且不重復搶購同一種商品,對A,B,C三件商品搶購成功的概率分別為a,b, ,已知三件商品都被搶購成功的概率為 ,至少有一件商品被搶購成功的概率為
(1)求a,b的值;
(2)若購物平臺準備對搶購成功的A,B,C三件商品進行優(yōu)惠減免,A商品搶購成功減免2百元,B商品搶購成功減免4比百元,C商品搶購成功減免6百元.求該名網購者獲得減免總金額(單位:百元)的分別列和數學期望.

查看答案和解析>>

同步練習冊答案