18.已知函數(shù)f(x)=sin(x+$\frac{π}{6}$),其中x∈[-$\frac{π}{3}$,a],若f(x)的值域是[-$\frac{1}{2}$,1],則cosα的取值范圍是( 。
A.$[\frac{1}{2},1)$B.$[{-1,\frac{1}{2}}]$C.$[{0,\frac{1}{2}}]$D.$[{-\frac{1}{2},0}]$

分析 根據(jù)f(x)的值域,利用正弦函數(shù)的圖象和性質(zhì),即可得出α+$\frac{π}{6}$的取值范圍,由此求出α的取值范圍,由余弦函數(shù)圖象即可取得cosα的取值范圍.

解答 解:∵x∈[-$\frac{π}{3}$,α],函數(shù)數(shù)f(x)=sin(x+$\frac{π}{6}$)的值域是[-$\frac{1}{2}$,1],
∴x+$\frac{π}{6}$∈[-$\frac{π}{6}$,α+$\frac{π}{6}$];
由正弦函數(shù)的圖象和性質(zhì)知:$\frac{π}{2}$≤α+$\frac{π}{6}$≤$\frac{7π}{6}$,
解得:$\frac{π}{3}$≤α≤π,
由余弦函數(shù)的圖象可知:-1≤cosα≤$\frac{1}{2}$,
故選B.

點評 本題考查正弦余弦函數(shù)圖象與性質(zhì),考查特殊角的三角函數(shù)值的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.自行車大鏈輪有48齒,小鏈輪有20齒,當大鏈輪轉(zhuǎn)過一周時,小鏈輪轉(zhuǎn)過的角度是4.8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點A(1,3),且函數(shù)f(x)在x=-$\frac{4}{3}$處取得極值.
(1)求實數(shù)a,b的值;
(2)求函數(shù)f(x)在[-1,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.隨著人們經(jīng)濟收入的不斷增長,購買家庭轎車已不再是一種時尚.隨著使用年限的增加,車的維修與保養(yǎng)的總費用到底會增加多少一直是購車一族非常關心的問題.某汽車銷售公司做一次抽樣調(diào)查,得出車的使用年限x(單位:年)與維修與保養(yǎng)的總費用y(單位:千元)的統(tǒng)計結(jié)果如表:
使用年限x23456
維修與保養(yǎng)的總費用y23569
根據(jù)此表提供的數(shù)據(jù)可得回歸直線方程$\stackrel{∧}{y}$=1.7x+$\hat a$,據(jù)此估計使用年限為10年時,該款車的維修與保養(yǎng)的總費用大概是( 。
A.15200B.12500C.15300D.13500

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.不等式x(1-2x)>0的解集為{x|0$<x<\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若tanα=-2,則sin2α+sinαcosα=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)關于x的不等式mx2+6mx+m+8≥0在R上恒成立,求m的取值范圍;
(2)對于集合A={x|x2-2ax+4a-3=0},B={x|x2-2$\sqrt{2}$x+a2+a+2=0}是否存在實數(shù)a,使A∪B=∅?若存在,求出a的取值,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知正四棱錐S-ABCD的側(cè)棱長與底面邊長都等于2,點E是棱SB的中點,則直線AE與直線SD所成的角的余弦值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|x≥-1},則正確的是(  )
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

同步練習冊答案