13.如圖,四棱錐P-ABCD的底面ABCD為菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,點(diǎn)F為PC的中點(diǎn),則下列說法正確的序號為②④.
①AF⊥平面PBD;
②PA∥平面FBD;
③異面直線PA與DF的夾角為45°;
④BD⊥AF.

分析 利用線面平行、垂直的判定與性質(zhì),即可得出結(jié)論.

解答 解:①∵PA⊥平面ABCD,PA=AB,∠ABC=60°,點(diǎn)F為PC的中點(diǎn),
∴AF⊥PC,∴AF⊥平面PBD不正確;
②連接OF,則PA∥OF,∵PA?平面FBD,OF?平面FBD,∴PA∥平面FBD,正確;
③異面直線PA與DF的夾角=直線OF與DF的夾角,∵FO⊥平面ABCD,F(xiàn)O≠DO,∴直線OF與DF的夾角不為45°,不正確;
④∵BD⊥AC,BD⊥PA,AC∩PA=A,∴BD⊥平面PAC,∴BD⊥AF,正確.
故答案為:②④.

點(diǎn)評 本題考查線面平行、垂直的判定與性質(zhì),考查線面角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-4x+a+3,
(1)若函數(shù)y=f(x)在[-1,1]上存在零點(diǎn),求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x),x∈[t,4]的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{lna-lnx}{x}$在[1,+∞)上為增函數(shù),則實數(shù)a的取值范圍是( 。
A.0<a≤$\frac{1}{e}$B.a$≥\frac{1}{e}$C.$\frac{1}{{e}^{2}}$<a≤$\frac{1}{e}$D.a≥$\frac{1}{{e}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將5個小球放到3個盒子中,在下列條件下,各有多少種投放方法?
①小球不同,盒子不同,盒子不空;
 ②小球不同,盒子不同,盒子可空;
③小球不同,盒子相同,盒子不空;    
④小球不同,盒子相同,盒子可空;
⑤小球相同,盒子不同,盒子不空;   
⑥小球相同,盒子不同,盒子可空;
⑦小球相同,盒子相同,盒子不空;
⑧小球相同,盒子相同.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a>b>0,c<d<0,則下列結(jié)論正確的是( 。
A.ac>bdB.ad>bcC.ac<bdD.ad<bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正方形ABCD的邊長為2$\sqrt{2}$,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD,F(xiàn)O=$\sqrt{3}$.
(1)求BF與平面ABCD所成的角的正切值;
(2)求三棱錐O-ADE的體積;
(3)求證:平面AEF⊥平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα+cosβ=$\frac{\sqrt{3}}{2}$,cosα+sinβ=$\sqrt{2}$,則sin(α-β)=( 。
A.$\frac{5}{11}$B.-$\frac{5}{4}$C.-$\frac{5}{11}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=x,b=1,B=30°,若此三角形只有一解,則x的取值范圍是( 。
A.2B.0<x≤1C.2或0<x≤1D.1≤x≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,邊AC=1,AB=2,角A=$\frac{2}{3}π$,過A作AP⊥BC于P,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λμ=( 。
A.$\frac{10}{49}$B.$\frac{12}{49}$C.$\frac{6}{25}$D.$\frac{4}{25}$

查看答案和解析>>

同步練習(xí)冊答案