13.設(shè)函數(shù)y=sinωx(ω>0)在區(qū)間$[{-\frac{π}{5},\frac{π}{4}}]$上是增函數(shù),則ω的取值范圍為(0,2].

分析 根據(jù)函數(shù)y=sinωx(ω>0)在區(qū)間$[{-\frac{π}{5},\frac{π}{4}}]$上是增函數(shù),得出$\left\{\begin{array}{l}{-\frac{π}{5}ω≥-\frac{π}{2}}\\{\frac{π}{4}ω≤\frac{π}{2}}\\{ω>0}\end{array}\right.$,求出解集即可.

解答 解:函數(shù)y=sinωx(ω>0)在區(qū)間$[{-\frac{π}{5},\frac{π}{4}}]$上是增函數(shù),
∴$\left\{\begin{array}{l}{-\frac{π}{5}ω≥-\frac{π}{2}}\\{\frac{π}{4}ω≤\frac{π}{2}}\\{ω>0}\end{array}\right.$,
解得 0<ω≤2; 
所以ω的取值范圍是(0,2].
故答案為:(0,2].

點評 本題主要了考查正弦函數(shù)的單調(diào)性問題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若f(x)=$\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}$(a≠±1),在定義域(-∞,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。
A.(1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1)∪[${\sqrt{2}$,+∞)C.(-∞,-$\sqrt{2}}$]∪(1,$\sqrt{2}}$]D.(0,$\frac{2}{3}}$)∪[${\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若α、β是兩個不重合的平面,
①如果平面α內(nèi)有兩條直線a、b都與平面β平行,那么α∥β;
②如果平面α內(nèi)有無數(shù)條直線都與平面β平行,那么α∥β;
③如果直線a與平面α和平面β都平行,那么α∥β;
④如果平面α內(nèi)所有直線都與平面β平行,那么α∥β,
下列命題正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=aex-be-x-cx(a,b,c∈R)的導函數(shù)f′(x)為偶函數(shù),且曲線y=f(x)在點(0,f(0))處的切線的斜率為2-c
(1)確定a,b的值
(2)當c=1時,判斷f(x)的單調(diào)性
(3)若f(x)有極值,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“cosα=$\frac{\sqrt{3}}{2}$”是“cos2α=$\frac{1}{2}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)g(x)=Asinωx(A>0,ω>0)的最大值為2,其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,將g(x)向右平移$\frac{π}{12}$個單位,再向上平移一個單位得到f(x)的圖象
(1)求函數(shù)f(x)的解析式;
(2)設(shè)$α∈(0,\frac{π}{2})$,則$f(\frac{α}{2})=2$,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=x2-8x+12,x∈[-5,5],那么任取一點x0∈[-5,5],使f(x0)≤0的概率是(  )
A.1B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)y=f(x)的定義域為(-∞,1],則函數(shù)$y=f[{log_2}({x^2}-2)]$的定義域是($\sqrt{2}$,2]∪[-2,-$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:x+y≠-2,命題q:x,y不都是-1,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案