【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,函數(shù)的圖像不在軸上方,求的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)對函數(shù)求導,分當時和當時,討論導函數(shù)的正負,進而得到單調(diào)區(qū)間;(2)原式子等價于對任意,都有恒成立,即在上,按照第一問分的情況,繼續(xù)討論導函數(shù)的正負得到原函數(shù)的單調(diào)性,進而得到函數(shù)的最值,得到結(jié)果.
(1)函數(shù)的定義域為,
.
當時,恒成立,函數(shù)的單調(diào)遞增區(qū)間為.
當時,由,得或(舍去),
則由,得,由,得,
所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)對任意,函數(shù)的圖像不在軸上方,等價于對任意,都有恒成立,即在上.
由(1)知,當時,在上是增函數(shù),
又,不合題意;
當時,在處取得極大值也是最大值,
所以.
令,所以.
在上,,是減函數(shù).
又,所以要使得,須,即.
故的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】未了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,,,,,整理得到如圖所示的頻率分布直方圖.
在這100人中不支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
年齡 | |||||
不支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 23 | 17 |
(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);
(2)由頻率分布直方圖,若在年齡,,的三組內(nèi)用分層抽樣的方法抽取12人做問卷調(diào)查,求年齡在組內(nèi)抽取的人數(shù);
(3)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的不支持態(tài)度存在差異?
\ | 45歲以下 | 45歲以上 | 總計 |
不支持 | |||
支持 | |||
總計 |
附:,其中.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖:
第一種生產(chǎn)方式 | 第二種生產(chǎn)方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 |
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)m,并將完成生產(chǎn)任務所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:
超過m | 不超過m | 總計 | |
第一種生產(chǎn)方式 | |||
第二種生產(chǎn)方式 | |||
總計 |
(3)根據(jù)(2)中的列表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班隨機抽查了名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中組學生每天學習數(shù)學時間不足個小時,組學生每天學習數(shù)學時間達到一個小時,學校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達標,分以下記為未達標.
(1)根據(jù)莖葉圖完成下面的列聯(lián)表:
達標 | 未達標 | 總計 | |
組 | |||
組 | |||
總計 |
(2)判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.
參考公式與臨界值表:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新冠狀病毒嚴重威脅著人們的身體健康,我國某醫(yī)療機構為了調(diào)查新冠狀病毒對我國公民的感染程度,選了某小區(qū)的位居民調(diào)查結(jié)果統(tǒng)計如下:
感染 | 不感染 | 合計 | |
年齡不大于歲 | |||
年齡大于歲 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認為感染新冠狀病與不同年齡有關?
(3)已知在被調(diào)查的年齡大于歲的感染者中有名女性,其中位是女教師,現(xiàn)從這名女性中隨機抽取人,求至多有位教師的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某外語學校的一個社團有7名同學,其中2人只會法語,2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學校交流訪問.求:
(1)在選派的3人中恰有2人會法語的概率;
(2)求在選派的3人中既會法語又會英語的人數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系.
(1)若曲線:(t為參數(shù))與曲線相交于兩點,,求;
(2)若是曲線上的動點,且點的直角坐標為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差大于0的等差數(shù)列的前n項和為,且滿足,.
(1)求數(shù)列的通項公式;
(2)若,求的表達式;
(3)若,存在非零常數(shù),使得數(shù)列是等差數(shù)列,存在,不等式成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年出現(xiàn)各種食品問題,食品添加劑會引起血脂增高、血壓增高、血糖增高等疾病.為了解三高疾病是否與性別有關,醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如圖的列聯(lián)表:
患三高疾病 | 不患三高疾病 | 合計 | |
男 | 6 | 30 | |
女 | |||
合計 | 36 |
(1)請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)為了研究三高疾病是否與性別有關,請計算出統(tǒng)計量,并說明你有多大的把握認為三高疾病與性別有關?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com