lim
x→0+
1-
cosx
x(1-cos
x
)
=
 
考點:極限及其運算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用函數(shù)極限運算法則、“羅比達法則”即可得出.
解答: 解:原式=
lim
x→0+
sinx
2
cosx
×
2
x
sin
x
=
lim
x→0+
sinx
cosx
=0,
故答案為:0.
點評:本題考查了函數(shù)極限運算法則、“羅比達法則”,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,x2+x+1>0,則命題¬p為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(0,2,1),向量
b
=(-1,1,-2),則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinx,-1),
n
=(
3
cosx,-
1
2
),函數(shù)f(x)=
m
2
+
m
n
-2
(1)求函數(shù)的單調(diào)增區(qū)間
(2)將函數(shù)f(x)的圖象的橫坐標擴大到原來的2倍,在向左平移
π
3
的單位,得到函數(shù)g(x),若△ABC的三邊a,b,c所對的角為A,B,C,且三邊a,b,c成等差數(shù)列,且g(B)=
3
2
,試求(cosA-cosC)2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非負實數(shù)x,y,z滿足
3
x+y+z-
3
=0,則x+y+1的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)命題“若x2-3x+2=0,則x=1“的逆命題為“若x≠1,則x2-3x+2=0”;
(2)定義在R上的奇函數(shù)f(x),滿足f(x+2)=-f(x),則f(6)=0;
(3)函數(shù)y=log2x+x2-2在區(qū)間(1,2)內(nèi)只有一個零點;
(4)已知p:?x∈R,sinx≤1,q:若a<b,則am2<bm2,則p∧q為真命題.
其中正確命題的序號是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4,直線l的方程為(λ-1)x+(λ-1)y+1-λ=0(λ∈R)直線l與圓C交于PQ兩點,設(shè)O為原點.求證:對任意實數(shù)λ直線l過定點E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,cosA=
b
c
,則△ABC形狀是( 。
A、正三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某學(xué)校的一次選拔性考試中,隨機抽取了100名考生的成績(單位:分),并把所得數(shù)據(jù)列成了如下表所示的頻數(shù)分布表:
組別[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)5182826176
(1)求抽取的樣本平均數(shù)x和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)已知這次考試共有2000名考生參加,如果近似地認為這次成績z服從正態(tài)分布N(μ,σ2)(其中μ近似為樣本平均數(shù)
x
,σ2近似為樣本方差s2),且規(guī)定82.7分是復(fù)試線,那么在這2000名考生中,能進入復(fù)試的有多少人?(附:
161
≈12.7,若z~N(μ,σ2),則P(μ-σ<z<μ+σ)=0.682,P(μ-2σ<z<μ+2σ)=0.9544.).
(3)已知樣本中成績在[90,100]中的6名考生中,有4名男生,2名女生,現(xiàn)從中選3人進行回訪,記選出的男生人數(shù)為ξ,求ξ的分布列與期望E(ξ).

查看答案和解析>>

同步練習(xí)冊答案