求證:4n+2n≥2•3n (n∈N*
考點(diǎn):數(shù)學(xué)歸納法,不等式的證明
專題:證明題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用數(shù)學(xué)歸納法證明即可.
解答: 證明:①n=1時(shí),4+2=6=2×3成立;
②假設(shè)n=k時(shí)結(jié)論成立,即4k+2k≥2•3k,
則n=k+1時(shí),左邊=4k+1+2k+1=2(4k+2k)+2•4k≥4•3k+2•4k>4•3k+2•3k=2•3k+1,
即n=k+1時(shí),結(jié)論成立.
由①②可知4n+2n≥2•3n (n∈N*).
點(diǎn)評(píng):數(shù)學(xué)歸納法的步驟:①證明n=1時(shí)A式成立②然后假設(shè)當(dāng)n=k時(shí),A式成立③證明當(dāng)n=k+1時(shí),A式也成立④下緒論:A式對(duì)所有的正整數(shù)n都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(-sinαcosβ,2cosα),
n
=(2cos(-π),sin(π-β)),其中0<α<
π
2
,
π
2
<β<π,且
m
n
=
6
5
,|
n
|=
105
5
,求tan(α+2β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線x2-y2=a2(a>0)的左、右頂點(diǎn)分別為A、B,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn),若直線PA、PB的傾斜角分別為α,β,且β=kα(k>1),那么α的值是(  )
A、
π
2k-1
B、
π
2k
C、
π
2k+1
D、
π
2k+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD和矩形ADEF,平面ABCD⊥平面ADEF,AD=2AB,P為BC的中點(diǎn),M在AF上且AM=2MF,DP交AC與N點(diǎn).
(1)求證:MN∥平面BCEF;
(2)若四邊形ABCD為矩形,且AF=AB,求DM與平面MAP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
4
x+(
1
2
x-1,x∈[0,+∞)的值域?yàn)椋ā 。?/div>
A、(-
5
4
,1]
B、[-
5
4
,1]
C、(-1,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2+2x+(2-a)lnx
(1)當(dāng)a=-2時(shí),求f(x)的最大值
(2)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求a的取值范圍
(3)若曲線C:y=f(x)在點(diǎn)x=1處的切線l與C有且只有一個(gè)公共點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-x2([x]+
3
2
)+x,x∈[0,2),(其中[x]表示不大于x的最大整數(shù),如[0.1]=0,[-0.2]=-1),g(x)=kx(k≠0),若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有兩個(gè)不同的交點(diǎn),則k的取值范圍是( 。
A、(-
9
16
,-
1
2
]∪(
7
16
,
1
2
]
B、(-
1
2
,0)∪[
1
2
,1]
C、(-
1
2
,0)∪[
1
2
,1]∪{-
9
16
,
7
16
}
D、(-
1
2
,0)∪[
1
2
,1)∪{-
9
16
,
7
16
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為空間兩條直線,α,β為空間兩個(gè)平面,則下列命題中真命題的是( 。
A、若a不平行α,則在α內(nèi)不存在b,使得b平行a
B、若a不垂直α,則在α內(nèi)不存在b,使得b垂直a
C、若α不平行β,則在β內(nèi)不存在a,使得a平行α
D、若α不垂直β,則在β內(nèi)不存在a,使得a垂直α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有數(shù)據(jù):
①a=
3
2
;②a=1;③a=
3
;④a=2;⑤a=4;
(1)當(dāng)在BC邊上存在點(diǎn)Q,使PQ⊥QD時(shí),a可能取所給數(shù)據(jù)中的哪些值?請(qǐng)說明理由;
(2)在滿足(1)的條件下,a取所給數(shù)據(jù)中的最大值時(shí),求直線PQ與平面ADP所成角的正值;
(3)記滿足(1)的條件下的Q點(diǎn)為Qn(n=1,2,3,…),若a取所給數(shù)據(jù)的最小值時(shí),這樣的Q有幾個(gè)?試求二面角Qn-PA-Qn+1的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案