【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
若,函數(shù)在上的最小值為4,求a的值;
對(duì)于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長(zhǎng)度最大的注:區(qū)間長(zhǎng)度區(qū)間的右端點(diǎn)區(qū)間的左斷點(diǎn);
若中函數(shù)的定義域是解不等式.
【答案】(1) (2)(3)或
【解析】
(1)單調(diào)增區(qū)間和減區(qū)間是以作為分界點(diǎn),從而討論的大小關(guān)系后可得最小值,再利用最小值為求出.
(2)因?yàn)?/span>且其最小值為,故,在的左端點(diǎn)或右端點(diǎn)取最大值,故可得左端點(diǎn)或右端點(diǎn)的值,從而可求出區(qū)間長(zhǎng)度最長(zhǎng)的.
(3)利用函數(shù)的單調(diào)性得到關(guān)于的不等式組,解之即得解集.
(1)由題意得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時(shí),即時(shí)函數(shù)在處取得最小值,
故,解得,
當(dāng)時(shí),即時(shí),函數(shù)在處取得最小值,
故,解得不符合題意,舍去.
綜上可得.
(2)由(1)得,又時(shí)函數(shù)取得最小值,
令,則,解得 或,
又,故區(qū)間長(zhǎng)度最大的.
(3)由(1)知函數(shù)在上單調(diào)遞增,
故原不等式等價(jià)于,
解得或,
故不等式的解集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí)(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)分析,該工廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2≠b2,且b2為a1、a2的等差中項(xiàng),a2為b2、b3的等差中項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為正方形,平面.
(1)求證:;
(2)若點(diǎn)在線段上,且滿(mǎn)足,求證:平面;
(3)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程|2x3﹣8x|+mx=4有且僅有2個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.(﹣∞,﹣2)∪(2,+∞)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣2,2)
D.(﹣1,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過(guò)橢圓C的右焦點(diǎn)且垂直于x軸的直線與橢圓交于A,B兩點(diǎn),且|AB|= .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)的直線l交橢圓C于E,F(xiàn)兩點(diǎn),若存在點(diǎn)G(﹣1,y0)使△EFG為等邊三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿(mǎn)足.
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)直線的參數(shù)方程是(為參數(shù)),其中. 與交于點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在上的函數(shù)(, ),給出以下四個(gè)論斷:
①的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點(diǎn)對(duì)稱(chēng);④的圖象關(guān)于直線對(duì)稱(chēng).以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的一個(gè)命題(寫(xiě)成“”的形式)__________.(其中用到的論斷都用序號(hào)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com