. (本題滿分15分)已知點(diǎn),
為一個(gè)動(dòng)點(diǎn),且直線
的斜率之積為
(I)求動(dòng)點(diǎn)的軌跡
的方程;
(II)設(shè),過(guò)點(diǎn)
的直線
交
于
兩點(diǎn),
的面積記為S,若對(duì)滿足條件的任意直線
,不等式
的最小值。
(I)(II)
【解析】
試題分析:(I)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為
由條件得 即
所以動(dòng)點(diǎn)的軌跡
的方程為
……6分
(II)設(shè)點(diǎn)的坐標(biāo)分別是
當(dāng)直線
所以
所以
當(dāng)直線
由
……8分
所以
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313055655839813/SYS201301131309131208543080_DA.files/image016.png">
所以
綜上所述
……12分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011313055655839813/SYS201301131309131208543080_DA.files/image019.png">恒成立
即恒成立
由于所以
所以恒成立,所以
……15分
考點(diǎn):本小題主要考查軌跡方程的求法、直線與橢圓的位置關(guān)系、向量的運(yùn)算和恒成立問(wèn)題,考查學(xué)生運(yùn)算求解的基本技能、推理論證能力和數(shù)形結(jié)合思想.
點(diǎn)評(píng):這是一道直線與圓錐曲線的綜合題目,求軌跡方程時(shí),不要忘記限制條件;設(shè)直線方程時(shí),不要忘記考慮斜率存在與不存在兩種可能,總之思路一定要細(xì)致,解題步驟一定要嚴(yán)謹(jǐn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎(jiǎng)銷售將商品的售價(jià)提高120元后允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),每次抽獎(jiǎng)的方法是在已經(jīng)設(shè)置并打開(kāi)了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個(gè) 1~6的整數(shù)數(shù)作為號(hào)碼,若該號(hào)碼是3的倍數(shù)則顧客獲獎(jiǎng),每次中獎(jiǎng)的獎(jiǎng)金為100元,運(yùn)用所學(xué)的知識(shí)說(shuō)明這樣的活動(dòng)對(duì)商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,求實(shí)數(shù)
的最大值;
(Ⅱ)若對(duì)任意的
,
都成立,求實(shí)數(shù)
的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線
相切
1)求b的值;
2)若方程在
上恰有兩個(gè)不等的實(shí)數(shù)根
,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:
(
),焦點(diǎn)為
,直線
交拋物線
于
、
兩點(diǎn),
是線段
的中點(diǎn),
過(guò)作
軸的垂線交拋物線
于點(diǎn)
,
(1)若拋物線上有一點(diǎn)
到焦點(diǎn)
的距離為
,求此時(shí)
的值;
(2)是否存在實(shí)數(shù),使
是以
為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com