8.等比數(shù)列{an}的各項(xiàng)均為實(shí)數(shù),其前n項(xiàng)為Sn,已知S3=$\frac{7}{4}$,S6=$\frac{63}{4}$,則a8=32.

分析 設(shè)等比數(shù)列{an}的公比為q≠1,S3=$\frac{7}{4}$,S6=$\frac{63}{4}$,可得$\frac{{a}_{1}(1-{q}^{3})}{1-q}$=$\frac{7}{4}$,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{63}{4}$,聯(lián)立解出即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q≠1,
∵S3=$\frac{7}{4}$,S6=$\frac{63}{4}$,∴$\frac{{a}_{1}(1-{q}^{3})}{1-q}$=$\frac{7}{4}$,$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{63}{4}$,
解得a1=$\frac{1}{4}$,q=2.
則a8=$\frac{1}{4}×{2}^{7}$=32.
故答案為:32.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z滿足z(1+i)=2i,則z的共軛復(fù)數(shù)$\overline{z}$等于( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=sinθ}\end{array}\right.$,(θ為參數(shù)),直線l的參數(shù)方程為 $\left\{\begin{array}{l}{x=a+4t}\\{y=1-t}\end{array}\right.$,(t為參數(shù)).
(1)若a=-1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為$\sqrt{17}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的最小正周期為( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為200,400,300,100件.為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取18件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1,過(guò)點(diǎn)F2作直線PF2的垂線l2
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l1,l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,正方形ABCD內(nèi)的圖形來(lái)自中國(guó)古代的太極圖.正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對(duì)稱.在正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自黑色部分的概率是( 。
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{1}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求和:b1+b3+b5+…+b2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,正方形ABCD的邊長(zhǎng)為1,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),AE∥FC,AE⊥AB,AE=1,DE=$\sqrt{2}$,F(xiàn)C=$\frac{1}{2}$.
(1)證明:CD⊥平面ADE;
(2)求三棱錐E-BDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案