分析 (1)利用三種方程的轉(zhuǎn)化方法,即可求圓C的普通方程和極坐標(biāo)方程;
(2)射線OM:θ=$\frac{π}{4}$與圓C的交于O、P兩點(diǎn),則ρ=$\sqrt{2}$,即可求P的極坐標(biāo).
解答 解:(1)圓C的參數(shù)方程$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),普通方程為(x-1)2+y2=1,即x2+y2=2x,極坐標(biāo)方程為ρ=2cosθ;
(2)射線OM:θ=$\frac{π}{4}$與圓C的交于O、P兩點(diǎn),則ρ=$\sqrt{2}$,∴P的極坐標(biāo)為($\sqrt{2},\frac{π}{4}$).
點(diǎn)評(píng) 本題考查三種方程的轉(zhuǎn)化方法,考查極坐標(biāo)方程的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5π}{48}$,0) | B. | (-$\frac{7π}{48}$,0) | C. | (-$\frac{5π}{48}$,1) | D. | (-$\frac{7π}{48}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3+2i | B. | -3-2i | C. | -2+3i | D. | 3+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | (3,0) | C. | (1,2) | D. | (2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com