【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的;

(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表

短期培訓(xùn)

長(zhǎng)期培訓(xùn)

合計(jì)

能力優(yōu)秀

能力不優(yōu)秀

合計(jì)

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

【答案】(1)0.024;(2)可以在犯錯(cuò)誤概率不超過(guò)的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān)

【解析】試題分析:(1)由莖葉圖知A類工人中抽查人數(shù)為25名,B類工人中應(yīng)抽查100﹣25=75,由頻率分布直方圖求出x;

(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122,由(1)及頻率分布直方圖,估計(jì)B類工人生產(chǎn)能力的平均數(shù);

(3)求出K2,與臨界值比較,即可得出結(jié)論.

試題解析:

解:(1)由莖葉圖知A類工人中抽查人數(shù)為25,

∴B類工人中應(yīng)抽查100-25=75(名).

由頻率分布直方圖得 (0.008+0.02+0.048+x)10=1,得x=0.024.

(2)由莖葉圖知A類工人生產(chǎn)能力的中位數(shù)為122

由(1)及頻率分布直方圖,估計(jì)B類工人生產(chǎn)能力的平均數(shù)為

1150.00810+1250.02010+1350.04810+1450.02410=133.8

(3)由(1)及所給數(shù)據(jù)得能力與培訓(xùn)的22列聯(lián)表,

短期培訓(xùn)

長(zhǎng)期培訓(xùn)

合計(jì)

能力優(yōu)秀

8

54

62

能力不優(yōu)秀

17

21

38

合計(jì)

25

75

100

由上表得>10.828

因此,可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形, 平面 , , 分別是, 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質(zhì)可得,,因此平面,從而得證(2)先找到EH什么時(shí)候最短,顯然當(dāng)線段長(zhǎng)的最小時(shí), ,在中, , ,∴,由中, , ,∴.然后建立空間直角坐標(biāo)系,寫出兩個(gè)面法向量再根據(jù)向量的夾角公式即可得余弦值

解析:(1)證明:∵四邊形為菱形,

為正三角形.又的中點(diǎn),∴.

,因此.

平面, 平面,∴.

平面, 平面,

平面.又平面,∴.

(2)如圖, 上任意一點(diǎn),連接 .

當(dāng)線段長(zhǎng)的最小時(shí), ,由(1)知,

平面, 平面,故.

中, , , ,

,

中, , ,∴.

由(1)知, , 兩兩垂直,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又, 分別是 的中點(diǎn),

可得, , ,

, , ,

所以, .

設(shè)平面的一法向量為

因此,

,則,

因?yàn)?/span>, ,所以平面,

為平面的一法向量.又,

所以 .

易得二面角為銳角,故所求二面角的余弦值為.

型】解答
結(jié)束】
20

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直角梯形中,,、分別是、上的點(diǎn),且,.沿將四邊形翻折至,連接、,得到多面體,且

Ⅰ)求多面體的體積;

Ⅱ)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017吉林延邊州模擬)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.

(1)求動(dòng)點(diǎn)A的軌跡M的方程;

(2)P為軌跡M上的動(dòng)點(diǎn),△PBC的外接圓為☉O1,當(dāng)點(diǎn)P在軌跡M上運(yùn)動(dòng)時(shí),求點(diǎn)O1x軸的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的

(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表

短期培訓(xùn)

長(zhǎng)期培訓(xùn)

合計(jì)

能力優(yōu)秀

能力不優(yōu)秀

合計(jì)

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于下列四個(gè)命題:

p1:x0(0,+∞),;

p2:x0(0,1),lox0>lox0;

p3:x(0,+∞),<lox;

p4:x<lox.

其中的真命題是(  )

A. p1,p3 B. p1,p4

C. p2,p3 D. p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線. 

(1)求曲線的極坐標(biāo)方程;

(2)直線的參數(shù)方程為為參數(shù)),判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3

1)求數(shù)列{an}的通項(xiàng)公式;

2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案