如圖,已知圓O的半徑為3,AB與圓O相切于A,BO與圓O相交于C,BC=2,則△ABC的面積為
 
考點:與圓有關(guān)的比例線段
專題:立體幾何
分析:由已知得OA⊥AB,OA=3,OB=5,AB=4,sin∠B=
OA
OB
=
3
5
,由S△ABC=
1
2
AB•BC•sin∠B
,能求出△ABC的面積.
解答: 解:連結(jié)OA,∵圓O的半徑為3,AB與圓O相切于A,
BO與圓O相交于C,BC=2,
∴OA⊥AB,OA=3,OB=5,
∴AB=4,
sin∠B=
OA
OB
=
3
5
,
S△ABC=
1
2
AB•BC•sin∠B

=
1
2
×4×2×
3
5
=
12
5

故答案為:
12
5
點評:本題考查三角形的面積的求法,是中檔題,解題時要注意切割線定理和正弦定理的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≤2
2x+y≥4
y≥-2
,則目標(biāo)函數(shù)z=-x-y的最大值為(  )
A、0B、-2C、-4D、-l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,點P在AB上,且
.
AP
.
AB
(0≤λ≤1),則
.
CA
.
CP
的最大值為
(  )
A、a
B、a2
C、2a
D、
2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)f(x)=xα在第一象限是減函數(shù)且對于定義域內(nèi)的任意x滿足f(-x)=f(x),若α∈{-
1
2
,2,-2,
1
2
},則α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知b=2
3
,c=6,B=30°.
(I)求角A及邊a;
(Ⅱ)若cosβ=
2
5
5
,β∈(0,
π
2
)
,求tan(2β+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
c
為三個非零向量,且
a
+
b
+
c
=
0
,|
a
|=2,|
b
-
c
|=2,則|
b
|+|
c
|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為各項均為1的無窮數(shù)列,若在數(shù)列{an}的首項a1后面插入1,隔2項,即a3后面插入2,再隔3項,即a6后面插入3,…這樣得到一個新數(shù)列{bn},則數(shù)列{bn}的前2010項的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lnx+2x-6的零點在區(qū)間[k-1,k](k∈N)內(nèi),則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知高一年級有學(xué)生450人,高二年級有學(xué)生750人,高三年級有學(xué)生600人.用分層抽樣從該校的這三個年級中抽取一個容量為n的樣本,且每個學(xué)生被抽到的概率為0.02,則應(yīng)從高二年級抽取的學(xué)生人數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案