已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,n∈N*,其導(dǎo)函數(shù)記為fn(x),且滿足:數(shù)學(xué)公式為常數(shù).
(I)試求λ的值;
(II)設(shè)函數(shù)f2n-1(x)與fn(1-x)的乘積為函數(shù)F(x),求F(x)的極大值與極小值;
(III)若gn(x)=ex•fn(x),試證明關(guān)于x的方程數(shù)學(xué)公式在區(qū)間(0,2)上有唯一實(shí)數(shù)根;記此實(shí)數(shù)根為x(n),求x(n)的最大值.

解:(1)f′2(x)=2x,∴2[x1+(x2-x1)]=(x22-x12)/(x2-x1)
∴x2+x1=2x1+(x2-x1)?λ=2
(2)令y=F(X)=f′2n-1(x)•fn(1-x)=(1-x)n•x2n-1,則
①當(dāng)n=1時(shí),y=x-x2,y′=1-2x,令y′=o,得x=,x∈{-∞,},y′>0
x∈{,+∞},y′<0,所以,當(dāng)x=時(shí),y極大=,無(wú)極小值
②當(dāng)n≥2時(shí),y′=-n(1-x)n•x2n-1+(2n-1)x(2n-2).(1-x)n=x2n-1.(1-x)n[(2n-1)-(3n-1)x]
令y′=0則x1=0,x2=,x3=1且x1x2x3
①當(dāng)n為正偶數(shù)時(shí),隨x的變化,y′和y的變化如下:
分析:(1)利用求導(dǎo)公式求函數(shù)的導(dǎo)數(shù),令n=2,代入等式求λ,
(2)利用導(dǎo)數(shù)公式求函數(shù)的導(dǎo)數(shù),畫圖求函數(shù)的單調(diào)性,根據(jù)導(dǎo)數(shù)求極值,
(3)利用導(dǎo)數(shù)求導(dǎo)和利用數(shù)學(xué)歸納法,在當(dāng)a=1時(shí)和當(dāng)a≥2時(shí)的條件下證明
點(diǎn)評(píng):該題考查函數(shù)的求導(dǎo)公式,和數(shù)學(xué)歸納法的使用,注意畫圖,有點(diǎn)難度
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對(duì)于任意的實(shí)數(shù)x,y,f(x+y)=f(x)+f(y),且x>0時(shí),f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數(shù);
(3)證明:f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對(duì)任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求證:f(x)是奇函數(shù),
(3)舉出一個(gè)符合條件的函數(shù)y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無(wú)極值點(diǎn),其導(dǎo)函數(shù)g′(x)有零點(diǎn),求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點(diǎn)處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足xf(x)為偶函數(shù),f(x+2)=-f(x),(x∈R) 且當(dāng)1≤x≤3時(shí),f(x)=(2-x)3
(1)求-1≤x≤0時(shí),函數(shù)f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(
π
3
)
y2=f(3x2+1)y3=f(log2
1
4
)
之間的大小關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案