【題目】某苗木基地常年供應多種規(guī)格的優(yōu)質樹苗.為更好地銷售樹苗,建設生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購買合同的概率分別、,且基地是否得到三家公司的購買合同是相互獨立的.

1)若公司甲計劃與基地簽訂300棵銀杏實生苗的銷售合同,每棵銀杏實生苗的價格為90元,栽種后,每棵樹苗當年的成活率都為0.9,對當年沒有成活的樹苗,第二年需再補種1.現(xiàn)公司甲為苗木基地提供了兩種售后方案,

方案一:公司甲購買300棵銀杏樹苗后,基地需提供一年一次,共計兩年的補種服務,且每次補種人工及運輸費用平均為800元;

方案二:公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負責.

若基地首次運送方案一的300棵樹苗及方案二的360棵樹苗的運費及栽種費用合計都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?

2)記為該基地得到三家公司購買合同的個數(shù),若,求隨機變量的分布列與數(shù)學期望.

【答案】(1)方案一:26770元;方案二:25400元;(2)分布列見解析;

【解析】

(1)用購買銀杏樹苗的收入減去人工費用和運輸費用;

(2)先利用求出的值,再根據題意分別求出,再列出分布列并求出數(shù)學期望.

(1)方案一、每棵銀杏實生苗的價格為90元,栽種后,

且每棵樹苗當年的成活率都為0.9,基地需提供一年一次,

共計兩年的補種服務,且每次補種人工及運輸費用平均為800元,

則苗木基地的合同收益為:

(元);

方案二、公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,

后期的移栽培育工作由公司甲自行負責,

則苗木基地的合同收益為:(元)

(2)記為該基地得到三家公司購買合同的個數(shù),

且公司甲、乙、丙的購買合同的概率分別、、,

所以

解得:,

可取值為0、12、3,則

,,

,

,

則隨機變量的分布列為

0

1

2

3

數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點為其左頂點,點的坐標為,過點作直線與橢圓交于兩點,當垂直于軸時,.

1)求該橢圓的方程;

2)設直線分別交直線于點,,線段的中點為,設直線的斜率分別為,,且,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求在點處的切線方程;

2)當時,證明:;

3)判斷曲線是否存在公切線,若存在,說明有幾條,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面為直角梯形,平面,且,.

1)求證:平面平面;

2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實數(shù)的值;

(2)試討論函數(shù)在區(qū)間上的最大值;

(3)若時,函數(shù)恰有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足,設,.

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)若,,求實數(shù)的最小值;

(Ⅲ)當時,給出一個新數(shù)列,其中,設這個新數(shù)列的前項和為,若可以寫成,)的形式,則稱為“指數(shù)型和”.問中的項是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,將曲線繞極點順時針旋轉后得到曲線的曲線記為.

1)求曲線的極坐標方程;

2)設的交點為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名數(shù)學家劉徽的杰作《九章算術注》是中國最寶貴的數(shù)學遺產之一,書中記載了他計算圓周率所用的方法.先作一個半徑為1的單位圓,然后做其內接正六邊形,在此基礎上做出內接正邊形,這樣正多邊形的邊逐漸逼近圓周,從而得到圓周率,這種方法稱為“劉徽割圓術”.現(xiàn)設單位圓的內接正邊形的一邊為,點為劣弧的中點,則是內接正邊形的一邊,現(xiàn)記,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為進一步規(guī)范校園管理,強化飲食安全,提出了遠離外賣,健康飲食的口號.當然,也需要學校食堂能提供安全豐富的菜品來滿足同學們的需求.在學期末,校學生會為了調研學生對本校食堂A部和B部的用餐滿意度,從在A部和B部都用過餐的學生中隨機抽取了200人,每人分別對其評分,滿分為100分.隨后整理評分數(shù)據,將分數(shù)分成6組:第1,第2,第3,第4,第5,第6,得到A部分數(shù)的頻率分布直方圖和B部分數(shù)的頻數(shù)分布表.

分數(shù)區(qū)間

頻數(shù)

7

18

21

24

70

60

定義:學生對食堂的滿意度指數(shù)

分數(shù)

滿意度指數(shù)

0

1

2

3

4

5

1)求A部得分的中位數(shù)(精確到小數(shù)點后一位);

2A部為進一步改善經營,從打分在80分以下的前四組中,采用分層抽樣的方法抽取8人進行座談,再從這8人中隨機抽取3人參與端午節(jié)包粽子實踐活動,在第3組抽到1人的情況下,第4組抽到2人的概率;

3)如果根據調研結果評選學生放心餐廳,應該評選A部還是B部(將頻率視為概率)

查看答案和解析>>

同步練習冊答案