11.有五張卡片,它的正反面分別寫(xiě)0與1,2與3,4與5,6與7,8與9,將它們?nèi)我馊龔埐⑴欧旁谝黄鸾M成三位數(shù),共可組成432個(gè)不同的三位數(shù).

分析 直接法,從0與1兩個(gè)特殊值著眼,可分三類(lèi),利用組合知識(shí)、乘法原理可得結(jié)論.

解答 解:(直接法)從0與1兩個(gè)特殊值著眼,可分三類(lèi):
①取0不取1,可先從另四張卡片中選一張作百位,有C41種選法;0可在后兩位,有C21種方法;
最后剩下的三張中任取一張,有C31種方法;又除含0的那張外,其他兩張都有正面或反面兩種可能,
故此時(shí)可得不同的三位數(shù)有C41C31C2122=432個(gè).
故答案為:432.

點(diǎn)評(píng) 本題考查組合知識(shí)、乘法原理,考查學(xué)生的計(jì)算能力,正確分類(lèi)討論是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-3,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)中,在區(qū)間(1,+∞)上為減函數(shù)的是( 。
A.y=$\frac{1}{x-1}$B.y=2x-1C.y=$\sqrt{x-1}$D.y=ln(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ex-ax-1(a∈R),函數(shù)g(x)=ln(ex-1)-lnx.
(1)求出f(x)的單調(diào)區(qū)間;
(2)若x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知cosα=$\frac{3}{5}$,cos(α+β)=$\frac{8}{17}$,α,β均為銳角,則cosβ=$\frac{84}{85}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列{an}中,a1=4,an+1=an+2n,則$\frac{a_n}{n}$的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,已知四邊形ABCD是矩形,M,N分別是AD,BC的中點(diǎn),P是CD上一點(diǎn),Q是AB上一點(diǎn),PM與QN交于R,A是原點(diǎn),B(2,0),C(2,1),D(0,1),P(t,1),Q(t,0),
(1)若$\overrightarrow{MP}⊥\overrightarrow{NP}$,求t的值;
(2)求證:$\overrightarrow{AR}=f(t)\overrightarrow{AC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若關(guān)于x的不等式$\sqrt{9-{x^2}}≤k(x+1)$的解集為區(qū)間[a,b],且b-a≥2,則實(shí)數(shù)k的取值范圍為( 。
A.$[\sqrt{2},+∞)$B.$[\frac{{\sqrt{5}}}{3},+∞)$C.$(0,\sqrt{2}]$D.$(-∞,\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.拋物線(xiàn)y=x2上的點(diǎn)到直線(xiàn)2x-y-11=0距離的最小值是( 。
A.$\frac{{10\sqrt{3}}}{3}$B.$4\sqrt{3}$C.$\frac{{12\sqrt{5}}}{5}$D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案