2.$\frac{(-1+i)(2+i)}{-i}$=-1-3i.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:原式=$\frac{(-3+i)•i}{-i•i}$=-1-3i,
故答案為:-1-3i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)圓臺(tái)上、下底面的半徑分別為3cm和8cm,若兩底面圓心的連線長(zhǎng)為12cm,則這個(gè)圓臺(tái)的母線長(zhǎng)為13cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.圓心為M(-1,0),且過(guò)點(diǎn)A(1,2)的圓(x+1)2+y2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是線段AD上靠近A的三等分點(diǎn),F(xiàn)是線段DC的中點(diǎn),若AB=2,AD=$\sqrt{3}$,則$\overrightarrow{EB•}$$\overrightarrow{EF}$=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知O:x2+y2=1和點(diǎn)$P(-1,\sqrt{3})$,A、B是圓O上兩個(gè)動(dòng)點(diǎn),則∠APB的最大值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且PO=OB=1.則三棱錐P-ABC體積的最大值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)點(diǎn)P(-1,0)的直線l與拋物線y2=5x相切,則直線l的斜率為( 。
A.±$\frac{\sqrt{2}}{2}$B.±$\frac{\sqrt{3}}{2}$C.±$\frac{\sqrt{5}}{2}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在數(shù)列{an}中,a1=$\frac{1}{2}$,對(duì)任意的n∈N*,都有$\frac{1}{(n+1)a_{n+1}}$=$\frac{na_n+1}{na_n}$成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;并求滿足Sn<$\frac{15}{16}$時(shí)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知回歸直線$\hat y=bx+a$,其中a=4,樣本點(diǎn)的中心為(1,6),則回歸直線的方程是( 。
A.$\hat y=2x+4$B.$\hat y=x+4$C.$\hat y=-2x+4$D.$\hat y=-x+4$

查看答案和解析>>

同步練習(xí)冊(cè)答案