若在(x+
3
x
)
n
的展開式中,各系數(shù)之和為A,各二項式系數(shù)之和為B,且A+B=72,則n的值為(  )
A、3B、4C、5D、6
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:由題意可得A=(1+
3
1
)
n
=4n,B=2n,再由A+B=4n+2n=72,求得2n的值,可得n的值.
解答: 解:由題意可得A=(1+
3
1
)
n
=4n,B=2n,再由A+B=4n+2n=72,可得(2n-8)(2n+9)=0,
∴2n=8,n=3,
故選:A.
點評:本題主要考查二項式定理的應(yīng)用,注意各系數(shù)之和,與各二項式系數(shù)之和的區(qū)別,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對任意的實數(shù)x恒有3sin2x-cos2x+4acosx+a2≤31,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=3-
1
3
,b=log2
1
3
,c=log23,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4 ,  0≤x≤2
 2x ,  x<0
,則f(f(1))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α終邊經(jīng)過點(1,-1),則cosα=(  )
A、1
B、-1
C、
2
2
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x+3,則f(x-1)等于(  )
A、2x-2B、2x-1
C、2x+1D、2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=30°,C=105°,a=10,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(f(x)-x2+x)=f(x)-x2+x.
(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(2)設(shè)有且僅有一個實數(shù)x0,使得f(x0)=x0,求函數(shù)f(x)的解析表達(dá)式;
(3)在(2)的條件下,求f(x)在區(qū)間[0,m]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(ax2+x+1),且a>0,求函數(shù)f(x)的單調(diào)區(qū)間及其極大值.

查看答案和解析>>

同步練習(xí)冊答案