【題目】如圖是我國南宋時期的數(shù)學家秦九韶提出的一種多項式f(x)=anxn+an1xn1+…+a1x+a0的求值問題的算法.現(xiàn)按照這個程序執(zhí)行函數(shù)f (x)=3x4﹣2x3﹣6x﹣17的計算,若輸入的值x0=2,則輸出的v的值是(

A.0
B.2
C.3
D.﹣3

【答案】C
【解析】解:∵模擬執(zhí)行程序,可得程序框圖的功能是根據(jù)算法anxn+an1xn1+…+a1x+a0=(((anx+an1)x+an2)x+…+a1)x+a0求值.
∵3x4﹣2x3﹣6x﹣17=(((3x﹣2)x)x﹣6)x﹣17,
∴x=2時,由內(nèi)向外計算,可得多項式3x4﹣2x3﹣6x﹣17的值為:(((3×2﹣2)×2)×2﹣6)×2﹣17=3,
故選:C.
【考點精析】本題主要考查了程序框圖的相關知識點,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列不等式中解集為實數(shù)集R的是(
A.x2+4x+4>0
B.
C.x2﹣x+1≥0
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分16分)如圖,在平面直角坐標系中,離心率為的橢圓 的左頂點為,過原點的直線(與坐標軸不重合)與橢圓交于兩點,直線分別與軸交于兩點.若直線斜率為時,

1)求橢圓的標準方程;

2)試問以為直徑的圓是否經(jīng)過定點(與直線的斜率無關)?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),
第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)

若直線,則在平面內(nèi),一定不存在與直線平行的直線.

若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

若直線,則在平面內(nèi),一定存在與直線垂直的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位“準笑星”在“信陽笑星”選拔賽中,5位評委給出的評分情況如圖所示,記甲、乙兩人的平均得分分別為 、 ,記甲、乙兩人得分的標準差分別為s1、s2 , 則下列判斷正確的是( )

A. ,s1<s2
B. ,s1>s2
C. ,s1<s2
D. ,s1>s2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖像如圖所示,則下列結論中一定成立的是(
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,F1,F2分別是橢圓的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.

(Ⅰ)求橢圓C的離心率;

(Ⅱ)已知△AF1B的面積為,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14分

在數(shù)列中,,且.

() 求,猜想的表達式,并加以證明;

() 設,求證:對任意的自然數(shù),都有;

查看答案和解析>>

同步練習冊答案