【題目】已知橢圓:()的一個焦點與拋物線:的焦點重合,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過焦點的直線與拋物線交于,兩點,與橢圓交于,兩點,滿足,求直線的方程.
【答案】(1)(2)
【解析】
(1)根據(jù)題意求出,即可寫出橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)直線不存在斜率時,可求出四點,可驗證;當(dāng)直線存在斜率時,設(shè)直線方程為,將直線分別與橢圓方程、拋物線方程聯(lián)立,利用弦長公式和焦點弦公式求出、,根據(jù)解方程即可.
解:(1)由已知橢圓的離心率,,得,則,
故橢圓的標(biāo)準(zhǔn)方程為
(2)當(dāng)直線不存在斜率時,可求出,,,,
所以,,不滿足條件;
當(dāng)直線存在斜率時,設(shè)直線方程為,代入橢圓方程得:
,恒成立,
設(shè),,則
∴
將直線:,代入拋物線得,
設(shè),,則,
又因為,
由得:,∴,
解得,
所以直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若討論的單調(diào)性;
(2)當(dāng)時,若函數(shù)與的圖象有且僅有一個交點,求的值(其中表示不超過的最大整數(shù),如.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:雙曲線:的左、右焦點分別為,,過作直線交軸于點.
(1)當(dāng)直線平行于的一條漸近線時,求點到直線的距離;
(2)當(dāng)直線的斜率為時,在的右支上是否存在點,滿足?若存在,求出點的坐標(biāo);若不存在,說明理由;
(3)若直線與交于不同兩點、,且上存在一點,滿足(其中為坐標(biāo)原點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)使不等式對任意,恒成立時最大的記為,求當(dāng)時,的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,設(shè)的內(nèi)切圓分別與邊相切于點,已知,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)過的直線與軸正半軸交于點,與曲線E交于點軸,過的另一直線與曲線交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0).
(1)求f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,π]時,f(x)值域為[3,4],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標(biāo)準(zhǔn)如下:4小時內(nèi)(含4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(含24小時)收費30元;超過24小時,按前述標(biāo)準(zhǔn)重新計費.上述標(biāo)準(zhǔn)不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
(小時) | ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進行進一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:
男 | 女 | 合計 | |
不超過6小時 | 30 | ||
6小時以上 | 20 | ||
合計 | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求的概率分布列及期望;
(ii)現(xiàn)隨機抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com