近年來(lái),某企業(yè)每年消耗電費(fèi)約24萬(wàn)元,為了節(jié)能減排,決定安裝一個(gè)可使用15年的太陽(yáng)能供電設(shè)備接入本企業(yè)電網(wǎng),安裝這種供電設(shè)備的工本費(fèi)(單位:萬(wàn)元)與太陽(yáng)能電池板的面積(單位:平方米)成正比,比例系數(shù)約為0.5.為了保證正常用電,安裝后采用太陽(yáng)能和電能互補(bǔ)供電的模式.假設(shè)在此模式下,安裝后該企業(yè)每年消耗的電費(fèi)(單位:萬(wàn)元)與安裝的這種太陽(yáng)能電池板的面積(單位:平方米)之間的函數(shù)關(guān)系是為常數(shù)).記為該村安裝這種太陽(yáng)能供電設(shè)備的費(fèi)用與該村15年共將消耗的電費(fèi)之和.
(1)試解釋的實(shí)際意義,并建立關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為多少平方米時(shí),取得最小值?最小值是多少萬(wàn)元?
(1);(2)當(dāng)為55平方米時(shí),取得最小值為57.5萬(wàn)元.
解析試題分析:(1)根據(jù)題意知,將其代入為常數(shù))即可求出參數(shù),
即可求出關(guān)于的函數(shù)關(guān)系式;(2)直接對(duì)函數(shù)進(jìn)行求導(dǎo),求出其極值點(diǎn),然后討論函數(shù)的單調(diào)性,進(jìn)
而求出函數(shù)的最小值.
試題解析:
(1)的實(shí)際意義是安裝這種太陽(yáng)能電池板的面積為0時(shí)的用電費(fèi)用,即未安裝電陽(yáng)能供電設(shè)備時(shí)全村每年消耗的電費(fèi).
由,得
所以
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7d/8/pewsc.png" style="vertical-align:middle;" />
當(dāng)且僅當(dāng),即時(shí)取等號(hào)
所以當(dāng)為55平方米時(shí),取得最小值為57.5萬(wàn)元.
(2)導(dǎo)數(shù)解法:,令得
當(dāng)時(shí),,當(dāng)時(shí),.
所以當(dāng)為55平方米時(shí),取得最小值為57.5萬(wàn)元.
考點(diǎn):導(dǎo)數(shù)的應(yīng)用;導(dǎo)數(shù)在研究函數(shù)的最值和極值中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù).
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),對(duì),都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是的導(dǎo)函數(shù),,且函數(shù)的圖象過(guò)點(diǎn).
(1)求函數(shù)的表達(dá)式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(其中).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)a=2時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求曲線在處的切線方程;
(2)若是的一個(gè)極值點(diǎn),且點(diǎn),滿足條件:.
(。┣的值;
(ⅱ)若點(diǎn)是三個(gè)不同的點(diǎn), 判斷三點(diǎn)是否可以構(gòu)成直角三
角形?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)在區(qū)間上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的,在區(qū)間上都存在兩個(gè)不同的,使得成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com