正方體的內(nèi)切球,與各棱相切的球,外接球的體積之比為( 。
A、1:2:3
B、1:
1
2
3
2
C、1:2
2
:3
3
D、1:
2
3
考點(diǎn):球的體積和表面積
專題:空間位置關(guān)系與距離
分析:設(shè)出正方體的棱長(zhǎng),分別求出正方體的內(nèi)切球與各棱相切的球以及與其外接球的半徑,然后求出體積比.
解答: 解:設(shè)正方體的棱長(zhǎng)為a,則它的內(nèi)切球的半徑為
1
2
a,它的外接球的半徑為
3
2
a,
與各棱相切的球的半徑為:
2
a
2

故所求的比為(
1
2
a)
3
(
2
2
a)
3
(
3
a
2
)
3
=1:2
2
:3
3
,
故選:C.
點(diǎn)評(píng):本題考查正方體的內(nèi)切球和外接球的體積,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知棱長(zhǎng)為1的正方體中ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同動(dòng)點(diǎn),給出以下判斷:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線AD成30°角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ的表面積一定是定值;
⑤若PQ=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.
其中真命題的是
 
(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先后拋擲2枚均勻的一分、二分的硬幣,觀察落地后硬幣的正、反面情況,則下列事件包含3個(gè)基本事件的是( 。
A、“至少一枚硬幣正面向上”
B、“只有一枚硬幣正面向上”
C、“兩枚硬幣都是正面向上”
D、“兩枚硬幣一枚正面向上,另一枚反面向上”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)y=f(x)在區(qū)間[-4,0]上單調(diào)遞增,則有( 。
A、f(-1)>f(
π
3
)>f(-π)
B、f(
π
3
)>f(-1)>f(-π)
C、f(-π)>f(-1)>f(
π
3
D、f(-1)>f(-π)>f(
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-
1
x
的定義域?yàn)椋ā 。?/div>
A、(0,1)
B、(-∞,0)∪(1,+∞)
C、(0,1]
D、(-∞,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)幾何體的三視圖,其中“正視圖”是一個(gè)邊長(zhǎng)為2的正方形,“俯視圖”是一個(gè)正三角形,則這個(gè)三視圖中“側(cè)視圖”的面積為( 。
A、
3
2
B、
3
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時(shí),f(x)=2006x+log2x,則在R上f(x)的零點(diǎn)個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin300°+tan240°的值是(  )
A、-
3
2
B、
3
2
C、-
1
2
+
3
D、
1
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是R上周期為5奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)=( 。
A、-1B、1C、-2D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案