4.“a=4”是“x+$\frac{4}{x}$≥a(x>0)恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)基本不等式的性質(zhì)求出a的取值范圍,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:∵x+$\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=2×2=4,
∴若x+$\frac{4}{x}$≥a恒成立,則a≤4,
則“a=4”是“x+$\frac{4}{x}$≥a(x>0)恒成立”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)基本不等式的性質(zhì)求出a的取值范圍是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出下列命題:
①若等比數(shù)列{an}的前n項(xiàng)和為Sn,則S100,S200-S100,S300-S200成等比數(shù)列;
②已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為An,Bn,且滿足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,則$\frac{{a}_{1}+{a}_{2}+{a}_{12}}{_{2}+_{4}+_{9}}$=$\frac{3}{2}$;
③已知點(diǎn)P(x,y)到A(0,4)和B(-2,0)的距離相等,則2x+4y的最小值為4$\sqrt{2}$
④若關(guān)于x的不等式(a2-1)x2-(a-1)x-1<0的解集為R,則a的取值范圍為(-$\frac{3}{5}$,-1).
⑤若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,則B=$\frac{π}{3}$.
其中正確的是②③⑤你認(rèn)為正確的命題序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥3}\\{x-2y≤0}\end{array}\right.$,則z=x+2y的最小值為( 。
A.-4B.5C.4D.無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,程序框圖輸出的結(jié)果是1320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵(lì)市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運(yùn)力,有效利用公共交通資源合理調(diào)度,在某地鐵站點(diǎn)進(jìn)行試點(diǎn)調(diào)研市民對(duì)候車(chē)時(shí)間的等待時(shí)間(候車(chē)時(shí)間不能超過(guò)20分鐘),以便合理調(diào)度減少候車(chē)時(shí)間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進(jìn)行調(diào)查分析,得到如下統(tǒng)計(jì)表和各時(shí)間段人數(shù)頻率分布直方圖:
分組等待時(shí)間(分鐘)人數(shù)
第一組[0,5)10
第二組[5,10)a
第三組[10,15)30
第四組[15,20)10
(Ⅰ)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個(gè)人中隨機(jī)抽取3人至少一人來(lái)自第二組的概率;
(Ⅱ)從這10人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)這3個(gè)人共來(lái)自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)點(diǎn)(0,-1)且斜率為2的直線方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入a=$\sqrt{3}$,b=1,那么輸出的b值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.對(duì)于函數(shù)f(x)=sin2x,下列說(shuō)法錯(cuò)誤的是①③④.
①f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是遞增的;
②f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
③f(x)的最小正周期為2π;
④f(x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知邊長(zhǎng)為3的等邊三角形ABC的三個(gè)頂點(diǎn)都在以O(shè)為球心的球面上,若三棱錐O-ABC的體積為$\frac{3\sqrt{3}}{4}$,則球的表面積為16π.

查看答案和解析>>

同步練習(xí)冊(cè)答案