已知曲線C:ρsin(θ+)=,曲線P:ρ2-4ρcosθ+3=0,

(1)求曲線C,P的直角坐標(biāo)方程.

(2)設(shè)曲線C和曲線P的交點(diǎn)為A,B,|AB|.

 

(1) x2+y2-4x+3=0 (2)

【解析】(1)由ρsin(θ+)=,

ρ[sinθ·(-)+cosθ·]=,

∴ρcosθ-ρsinθ-1=0,

x-y-1=0,

由ρ2-4ρcosθ+3=0,

x2+y2-4x+3=0.

(2)曲線P表示為(x-2)2+y2=1表示圓心在(2,0),半徑r=1的圓,

由于圓心到直線C的距離為d==,

|AB|=2=.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知2×2矩陣M=有特征值λ=-1及對(duì)應(yīng)的一個(gè)特征向量e1=.

(1)求矩陣M.

(2)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

若隨機(jī)變量XB(100,p),X的數(shù)學(xué)期望E(X)=24,p的值是(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:填空題

調(diào)查了某地若干戶家庭的年收入x(單位:萬元)和年飲食支出y(單元:萬元),調(diào)查顯示年收入x與年飲食支出y具有線性相關(guān)關(guān)系,并由調(diào)查數(shù)據(jù)得到y對(duì)x的回歸直線方程:=0.254x+0.321.由回歸直線方程可知,家庭年收入每年增加1萬元,年飲食支出平均增加    萬元.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy,O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為Cx,y軸的交點(diǎn).

(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).

(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:解答題

一個(gè)袋中裝有若干個(gè)大小相同的黑球、白球和紅球,已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是.

(1)若袋中共有10個(gè)球,

①求白球的個(gè)數(shù);

②從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為X,求隨機(jī)變量X的分布列.

(2)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于,并指出袋中哪種顏色的球的個(gè)數(shù)最少.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

一只袋內(nèi)裝有m個(gè)白球,n-m個(gè)黑球,連續(xù)不放回地從袋中取球,直到取出黑球?yàn)橹?/span>,設(shè)此時(shí)取出了ξ個(gè)白球,下列概率等于的是(  )

(A)P(ξ=3) (B)P(ξ≥2)

(C)P(ξ≤3) (D)P(ξ=2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

已知函數(shù)

1)若的極值點(diǎn),求的值;

2)若的圖象在點(diǎn)處的切線方程為,

①求在區(qū)間上的最大值;

②求函數(shù)的單調(diào)區(qū)間.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

一個(gè)四棱錐的底面為菱形,其三視圖如圖所示,則這個(gè)四棱錐的體積是 .

 

 

查看答案和解析>>

同步練習(xí)冊答案