【題目】函數(shù)f(x)=Asin(ωx+)(A,ω,是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論: ①最小正周期為π;
②將f(x)的圖象向左平移 個單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
④ ;
⑤ .
其中正確的是( )
A.①②③
B.②③④
C.①④⑤
D.②③⑤
【答案】C
【解析】解:由圖可得:函數(shù)函數(shù)y=Asin(ωx+)的最小值﹣|A|=﹣2, 令A>0,則A=2,又∵ = ﹣ ,ω>0
∴T=π,ω=2,
∴y=2sin(2x+)
將( ,﹣2)代入y=2sin(2x+)得sin( +)=﹣1
即 += +2kπ,k∈Z
即= +2kπ,k∈Z
∴f(x)=2sin(2x+ ).
∴f(0)=2sin = ,f(x+ )=2sin[2(x+ )+ ]=2sin(2x+ ).
f( )=2sin( + )=1.對稱軸為直線x= ,一個對稱中心是( ,0),故②③不正確;
根據(jù)f(x)=2sin(2x+ )的圖象可知,④ 正確;
由于f(x)=2sin(2x+ )的圖象關(guān)于點( ,0)中心對稱,故⑤ 正確.
綜上所述,其中正確的是①④⑤.br />故選C.
【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點,與x軸相交于點C,記O為坐標原點. (Ⅰ)證明:a2> ;
(Ⅱ)若 ,求△OAB的面積取得最大值時的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}中,a2=2,a5=128.
(1)求通項an;
(2)若bn=log2an , 數(shù)列{bn}的前n項和為Sn , 且Sn=360,求n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足:bn=an+1-an(n∈N*).
(1)若a1=1,bn=n,求數(shù)列{an}的通項公式;
(2)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.
(ⅰ)記cn=a6n-1(n≥1),求證:數(shù)列{cn}為等差數(shù)列;
(ⅱ)若數(shù)列中任意一項的值均未在該數(shù)列中重復出現(xiàn)無數(shù)次,求首項a1應滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零向量 , 滿足| |=1,且( ﹣ )( + )= .
(1)求| |;
(2)當 =- 時,求向量 與 +2 的夾角θ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A、B、C是橢圓上不同的三點, ,C在第三象限,線段BC的中點在直線OA上。
(1)求橢圓的標準方程;
(2)求點C的坐標;
(3)設(shè)動點P在橢圓上(異于點A、B、C)且直線PB, PC分別交直線OA于M、N兩點,證明為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:
:恰有四支球隊并列第一名為不可能事件; :有可能出現(xiàn)恰有兩支球隊并列第一名;
:每支球隊都既有勝又有敗的概率為; :五支球隊成績并列第一名的概率為.
其中真命題是
A. ,, B. ,, C. .. D. ..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中均為實數(shù), 為自然對數(shù)的底數(shù).
(I)求函數(shù)的極值;
(II)設(shè),若對任意的,
恒成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com