【題目】如果函數(shù)f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在區(qū)間[ ,2]上單調(diào)遞減,那么mn的最大值為(
A.16
B.18
C.25
D.

【答案】B
【解析】解:∵函數(shù)f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在區(qū)間[ ,2]上單調(diào)遞減,∴f′(x)≤0,故(m﹣2)x+n﹣8≤0在[ ,2]上恒成立.而(m﹣2)x+n﹣8是一次函數(shù),在[ ,2]上的圖象是一條線段.故只須在兩個端點處f′( )≤0,f′(2)≤0即可.即

由(2)得m≤ (12﹣n),
∴mn≤ n(12﹣n)≤ =18,當且僅當m=3,n=6時取得最大值,經(jīng)檢驗m=3,n=6滿足(1)和(2).
故選:B.
解法二:
∵函數(shù)f(x)= (m﹣2)x2+(n﹣8)x+1(m≥0,n≥0)在區(qū)間[ ,2]上單調(diào)遞減,
∴①m=2,n<8
對稱軸x=﹣ ,


設(shè)

設(shè)y= ,y′= ,
當切點為(x0 , y0),k取最大值.
①﹣ =﹣2.k=2x ,
∴y0=﹣2x0+12,y0= =2x0 , 可得x0=3,y0=6,
∵x=3>2
∴k的最大值為3×6=18
②﹣ =﹣ ,k= ,
y0= = ,
2y0+x0﹣18=0,
解得:x0=9,y0=
∵x0<2
∴不符合題意.
③m=2,n=8,k=mn=16
綜合得出:m=3,n=6時k最大值k=mn=18,
故選:B
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)和函數(shù)的極值與導數(shù)的相關(guān)知識點,需要掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某市司法部門為了宣傳《憲法》舉辦法律知識問答活動,隨機對該市18~68歲的人群抽取一個容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對回答問題情況進行統(tǒng)計后,結(jié)果如下表所示.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的比例

第1組

[18,28)

5

0.5

第2組

[28,38)

18

a

第3組

[38,48)

27

0.9

第4組

[48,58)

x

0.36

第5組

[58,68)

3

0.2


(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在[﹣1,1]的函數(shù)滿足f(﹣x)=﹣f(x),當a,b∈[﹣1,0)時,總有 >0(a≠b),若f(m+1)>f(2m),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x
(1)求f(log2 )的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復(fù)數(shù)z1= +(a2﹣3)i,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若復(fù)數(shù)z1﹣z2在復(fù)平面上對應(yīng)點落在第一象限,求實數(shù)a的取值范圍;
(2)若虛數(shù)z1是實系數(shù)一元二次方程x2﹣6x+m=0的根,求實數(shù)m值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動,求復(fù)數(shù)z所對應(yīng)的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是(

A.10
B.11
C.12
D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌茶壺的原售價為80元/個,今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購買一個茶壺,其價格為78元/個;如果一次購買兩個茶壺,其價格為76元/個;…,一次購買的茶壺數(shù)每增加一個,那么茶壺的價格減少2元/個,但茶壺的售價不得低于44元/個;乙店一律按原價的75%銷售.現(xiàn)某茶社要購買這種茶壺x個,如果全部在甲店購買,則所需金額為y1元;如果全部在乙店購買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數(shù)關(guān)系式;
(2)該茶社去哪家茶具店購買茶壺花費較少?

查看答案和解析>>

同步練習冊答案