1.已知集合A={1,2,6},B={2,3,6},則A∪B={1,2,3,6}.

分析 利用并集定義求解.

解答 解:∵集合A={1,2,6},B={2,3,6},
∴A∪B={1,2,3,6}.
故答案為:{1,2,3,6}.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)復(fù)數(shù)z=1+2i,則$\frac{z^2}{{|{z^2}|}}$=( 。
A.$\frac{3}{5}-\frac{4}{5}i$B.$-\frac{3}{5}+\frac{4}{5}i$C.$1+\frac{4}{5}i$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.甲、乙兩位同學(xué)約定周日早上8:00-8:30在學(xué)校門(mén)口見(jiàn)面,已知他們到達(dá)學(xué)校的時(shí)間是隨機(jī)的,則甲要等乙至少10分鐘才能見(jiàn)面的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)命題P:?n∈N,n2>2n,則¬P為( 。
A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∉N,n2≤2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)證明:數(shù)列{an-n}是等比數(shù)列
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn+1≤4Sn,對(duì)任意n∈N*成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知cosα=$\frac{3}{5}$,α∈(π,2π),則tan(α-$\frac{3π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,函數(shù)y=2$\sqrt{3}$cos(ωx+φ)(ω>0,0≤φ≤$\frac{π}{2}$)的圖象與y軸交于點(diǎn)(0,$\sqrt{6}$),周期是π.
(1)求函數(shù)解析式,并寫(xiě)出函數(shù)圖象的對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心;
(2)已知點(diǎn)A($\frac{π}{2}$,0),點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=$\frac{\sqrt{6}}{2}$,x0∈[$\frac{π}{2}$,π]時(shí),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知0<a<1,函數(shù)f(x)=logax.
(1)若f(5a-1)≥f(2a),求實(shí)數(shù)a的最大值;
(2)當(dāng)a=$\frac{1}{2}$時(shí),設(shè)g(x)=f(x)-3x+2m,若函數(shù)g(x)在(1,2)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若對(duì)任意實(shí)數(shù)x∈R,不等式$x_{\;}^2+m{x_{\;}}+2m-3≥0$恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.[2,6]B.[-6,-2]C.(2,6)D.(-6,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案