【題目】現(xiàn)將甲、乙兩個學(xué)生在高二的6次數(shù)學(xué)測試的成績(百分制)制成如圖所示的莖葉圖,進(jìn)入高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個學(xué)生的考試成績預(yù)計同時有了大的提升:若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應(yīng)的考試成績預(yù)計為.
(1)試預(yù)測:高三6次測試后,甲、乙兩個學(xué)生的平均成績分別為多少?誰的成績更穩(wěn)定?
(2)若已知甲、乙兩個學(xué)生的高二6次考試成績分別由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值,求的平均值.
【答案】(1)見解析;(2)2
【解析】
(1)由莖葉圖計算高二6次考試的甲乙平均成績,再分別加4即為高三平均成績;(2)列舉甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值,再計算均值即可
(1)甲高二的6次考試平均成績?yōu)?/span>,
乙高二的6次考試平均成績?yōu)?/span>,
所以預(yù)測甲高三的6次考試平均成績?yōu)?6,乙高三6次考試平均成績?yōu)?6,
甲高三的6次考試平均成績的方差為.
乙高三的6次考試平均成績的方差為.
因為77>55.7,所以乙的成績比較穩(wěn)定.
(2)預(yù)測高三的6次考試成績?nèi)缦拢?/span>
第1次考試 | 第2次考試 | 第3次考試 | 第4次考試 | 第5次考試 | 第次6考試 | |
甲 | 72 | 80 | 83 | 90 | 92 | 99 |
乙 | 75 | 79 | 86 | 88 | 90 | 98 |
因為y為高三的任意一次考試后甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值,
所以的值依次為3,1,3,2,2,1,
所以的平均值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點,且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程以及點的直角坐標(biāo);
(2)設(shè)直線與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點M,N的極坐標(biāo)分別為(2,0),(),圓C的參數(shù)方程(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點,求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)求證:對于任意,直線都不是曲線的切線;
(Ⅲ)試確定曲線與直線的交點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程為,直線l的參數(shù)方程為(為參數(shù),0≤α<π).
(1)求曲線C的直角坐標(biāo)方程.并說明曲線C的形狀;
(2)若直線l經(jīng)過點M(1,0)且與曲線C交于A、B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com