10.計算:$\overrightarrow{a}$+$\overrightarrow$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow$)=$\frac{3}{2}\overrightarrow$.

分析 直接利用向量的加減法求解即可.

解答 解:$\overrightarrow{a}$+$\overrightarrow$-$\frac{1}{2}$(2$\overrightarrow{a}$-$\overrightarrow$)=$\frac{3}{2}\overrightarrow$.
故答案為:$\frac{3}{2}\overrightarrow$.

點評 本題考查向量的加減法的運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當(dāng)x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且tanC=$\frac{3}{4}$,c=-3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)a∈{-1,$\frac{1}{2}$,2,3}時,冪函數(shù)f(x)=xa的圖象不可能經(jīng)過( 。
A.第二、四象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,圓O是△ABC的外接圓,D是$\widehat{AC}$的中點,BD交AC于E.
(Ⅰ)求證:DC2=DE•DB;
(Ⅱ)若CD=4$\sqrt{3}$,點O到AC的距離等于點D到AC的距離的一半,求圓O的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≤4}\end{array}\right.$的解集記為D,有下面四個命題:
p1:?(x,y)∈D,x+2y≥-2
p2:?(x,y)∈D,x+2y≥-2
p3:?(x,y)∈D,x+2y≤3
p4:?(x,y)∈D,x+2y≤-1
其中的真命題是p1,p2.(用命題編號作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知定義在R上的函數(shù)f(x)滿足:f(x)>0,f(x)•f(y)=f(x+y),且f(1)=$\frac{1}{2}$,當(dāng)x∈(0,+∞)時f(x)<1,關(guān)于x的不等式f(a)•f(-2-xex)-4>0(其中e為自然對數(shù)的底數(shù))恒成立,則實數(shù)a的取值范圍為(-∞,-$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知命題p:關(guān)于x的函數(shù)y=loga(x2-2ax+7a-6)的定義域為R;命題q:存在x∈R,使得關(guān)于x的不等式x2-ax+4<0成立,若p或q為真命題,p且q為假命題.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行圖中的程序,如果輸出的結(jié)果是4,那么輸入的只可能是( 。
A.-4B.2C.±2或者-4D.2或者-4

查看答案和解析>>

同步練習(xí)冊答案