13.過點(diǎn)(1,0)且與直線x-2y+3=0垂直的直線方程是( 。
A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0

分析 根據(jù)與已知直線垂直的直線系方程可設(shè)與直線x-2y+3=0垂直的直線方程為2x+y+c=0,再把點(diǎn)(1,0)代入,即可求出c值,得到所求方程.

解答 解:∵所求直線方程與直線x-2y+3=0垂直,
∴設(shè)所求直線的方程為2x+y+c=0
∵直線過點(diǎn)(1,0),
∴2+0+c=0
∴c=-2,
∴所求直線方程為2x+y-2=0,
故選:C.

點(diǎn)評 本題主要考查了互相垂直的兩直線方程之間的關(guān)系,以及待定系數(shù)法求直線方程,屬于常規(guī)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=lnx-$\frac{2}{x}$的零點(diǎn)所在的大致區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若某多面體的三視圖(單位:cm)如圖所示,則此多面體的體積是( 。
A.2 cm3B.4 cm3C.6 cm3D.12 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0且??>0,0<ϕ<$\frac{π}{2}$)的部分圖象,如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)=a在(0,$\frac{5π}{3}$)上有兩個(gè)不同的實(shí)根,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知M為不等式組$\left\{\begin{array}{l}{y≤{x}^{2}}\\{1≤x≤2}\\{y≥0}\end{array}\right.$表示的平面區(qū)域,直線l:y=2x+a,當(dāng)a從-2連續(xù)變化到0時(shí),區(qū)域M被直線掃過的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(1,2),且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$的坐標(biāo)為( 。
A.(1,2)或(-1,-2)B.(-1,-2)C.(2,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點(diǎn)Z表示復(fù)數(shù)z,則復(fù)數(shù)z的共軛復(fù)數(shù)是( 。
A.2+iB.2-iC.1+2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.10B.17C.19D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.扇形的周長是12,圓心角是2弧度,則扇形面積是9.

查看答案和解析>>

同步練習(xí)冊答案