已知函數(shù)f(x)=|2x-1|+2,g(x)=-|x+2|+3.,當(dāng)x∈R時,f(x)-g(x)≥m+2恒成立,實(shí)數(shù)m的取值范圍為
 
考點(diǎn):函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=|2x-1|+2,g(x)=-|x+2|+3,知f(x)-g(x)=|2x-1|+|x+2|-1,設(shè)h(x)=|2x-1|+|x+2|-1,則h(x)≥
3
2
.由當(dāng)x∈R時,f(x)-g(x)≥m+2恒成立,知m+2≤
3
2
,由此能求出實(shí)數(shù)m的取值范圍.
解答: 解:∵f(x)=|2x-1|+2,g(x)=-|x+2|+3,
∴f(x)-g(x)=|2x-1|+|x+2|-1,
設(shè)h(x)=|2x-1|+|x+2|-1,
則h(x)=
-3x-2,x≤-2
-x+2,-2<x<
1
2
3x,x≥
1
2
,
∴h(x)≥
3
2

∵當(dāng)x∈R時,f(x)-g(x)≥m+2恒成立,
∴m+2≤
3
2
,解得m≤-
1
2
,
所以,實(shí)數(shù)m的取值范圍是(-∞,-
1
2
].
故答案為:(-∞,-
1
2
].
點(diǎn)評:本題考查求實(shí)數(shù)的取值范圍,具體涉及到含絕對值不等式的性質(zhì)、函數(shù)的恒成立問題,綜合性強(qiáng),難度大,有一定的探索性,是高考的重點(diǎn).解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(-∞,+∞)上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且在[-1,0]上是增函數(shù),下面是關(guān)于f(x)的判斷:
①f(x)是周期函數(shù);
②f(x)的圖象關(guān)于直線x=1對稱; 
③f(x)在[0,1]上是增函數(shù);④f(2)=f(0).
其中正確的判斷是
 
(把你認(rèn)為正確的判斷都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M和圓C1:(x+1)2+y2=36內(nèi)切,并和圓C2:(x-1)2+y2=4外切,動圓圓心M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的不等式ax+b>0的解集為(1,+∞),則關(guān)于x的不等式(ax+b)(x+2)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與函數(shù)h(x)=
1
4
(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=loga|x-2|(a>0,且a≠1)在區(qū)間(1,2)上是增函數(shù),則f(x)在區(qū)間(2,+∞)上( 。
A、是增函數(shù)且有最大值
B、是增函數(shù)且無最大值
C、是減函數(shù)且有最小值
D、是減函數(shù)且無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}(n∈N*)滿足3a3=7a5>0,三點(diǎn)P(n,an)、Q(n+1,an+1)、R(n+2,an+2)在一條直線上.
(1)若a1=33,求通項(xiàng)公式an;
(2)若bn=anan+1an+2(n∈N*),數(shù)列{bn}的項(xiàng)是否均為正數(shù)?如果是,則說明理由;如果不是,則數(shù)列
{bn}中有多少項(xiàng)為正數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1(0≤x≤4)
2x(-4≤x<0)
,它的反函數(shù)為y=f-1(x),則f-1(4)+f-1
1
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},記和ai+aj(1≤i<j≤n)中所有不同值的個數(shù)為M(A).對于集合B={b1,b2,b3,…,bn},若實(shí)數(shù)b1,b2,b3,…,bn成等差數(shù)列,則M(B)=
 

查看答案和解析>>

同步練習(xí)冊答案