15.i2017=i.

分析 直接利用虛數(shù)單位的性質(zhì),即可得出結(jié)論.

解答 解:∵2017=4×504+1,
∴i2017=i,
故答案為i.

點(diǎn)評(píng) 本題考查虛數(shù)單位的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\left\{\begin{array}{l}{y≤2}\\{y≥x}\\{y≤a(x-1)}\end{array}\right.$,且z=x+y的最大值是2,則a=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$y=ln(2sinx-\sqrt{2})+\sqrt{1-2cosx}$的定義域是{x|$\frac{π}{3}$+2kπ≤x<$\frac{3π}{4}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知tanα=2,求$\frac{3sinα+2cosα}{sinα-cosα}$的值;
(2)已知0<α<π,sinα+cosα=$\frac{1}{5}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,PA⊥平面ABCD,底面ABCD為菱形,$∠ABC=\frac{π}{3}$,PA=AB=4,AC交BD于O,點(diǎn)N是PC的中點(diǎn).
(1)求證:BD⊥平面PAC;
(2)求平面ANC與平面ANB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R),其部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[0,π]時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,則( 。
A.b<a<cB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x)=$\frac{ax}{{x}^{2}+1}$+1,a∈R以下說法正確的是( 。
①函數(shù)f(x)的圖象是中心對(duì)稱圖形;
②函數(shù)f(x)有兩個(gè)極值;
③函數(shù)f(x)零點(diǎn)個(gè)數(shù)最多為三個(gè);
④當(dāng)a>0時(shí),若1<m<n,f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在平面內(nèi),$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,若$1<|\overrightarrow{OP}|<2$,則$|\overrightarrow{OA}|$的取值范圍是( 。
A.$(2\sqrt{3},\sqrt{17})$B.$(\sqrt{17},\sqrt{21})$C.$(\sqrt{17},2\sqrt{6})$D.$(\sqrt{21},2\sqrt{6})$

查看答案和解析>>

同步練習(xí)冊(cè)答案