某市四所中學報名參加某高校今年自主招生的學生人數(shù)如下表所示:

中學
 
 
 
 
人數(shù)
 
 
 
 
為了了解參加考試的學生的學習狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學的學生當中隨機抽取50名參加問卷調(diào)查.
(1)問四所中學各抽取多少名學生?
(2)從參加問卷調(diào)查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學的概率;
(3)在參加問卷調(diào)查的名學生中,從自兩所中學的學生當中隨機抽取兩名學
生,用表示抽得中學的學生人數(shù),求的分布列和期望.

(1) 從四所中學抽取的學生人數(shù)分別為;(2) 這兩名學生自同一所中學的概率為,(3)的分布列為:



1





 
.

解析試題分析:(1) 由題意知,四所中學報名參加該高校今年自主招生的學生總?cè)藬?shù)為100名,抽取的樣本容量與總體個數(shù)的比值為.據(jù)此即可計算出答案;(2) 利用組合的意義分別計算出從參加問卷調(diào)查的50名學生中隨機抽取兩名學生的方法和這兩名學生來自同一所中學的取法,再利用古典概型的概率計算公式即可得出;(3)由(1) 知,在參加問卷調(diào)查的50名學生中,來自A,C兩所中學的學生人數(shù)分別為15,10.可得ξ的可能取值為0,1,2.利用超幾何分布的概率計算公式,即可得到分布列,利用數(shù)學期望的概率計算公式即可得出.
試題解析:(1) 由題意知,四所中學報名參加該高校今年自主招生的學生總?cè)藬?shù)為100名,
抽取的樣本容量與總體個數(shù)的比值為.
∴應(yīng)從四所中學抽取的學生人數(shù)分別為.       4分
(2) (2) 設(shè)“從參加問卷調(diào)查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學”為事件,從參加問卷調(diào)查的名學生中隨機抽取兩名學生隨機抽取兩名學生的取法有種,這兩名學生來自同一所中學的取法有,所以.從參加問卷調(diào)查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學的概率;     7分
(3)由(1)知,在參加問卷調(diào)查的名學生中,自兩所中學的學生人數(shù)分別
.
依題意得,的可能取值為,                                8分
, ,.    11分
的分布列為:



1





     12分
考點:離散型隨機變量及其分布列;等可能事件的概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:

API







空氣質(zhì)量
優(yōu)

輕微污染
輕度污染
中度污染
中重度污染
重度污染
天數(shù)
4
13
18
30
9
11
15
(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為w)的關(guān)系式為:
,試估計在本年度內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染完成下面列聯(lián)表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關(guān)?
附:



















 
非重度污染
重度污染
合計
供暖季
 
 
 
非供暖季
 
 
 
合計
 
 
100
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個,已知從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個球,記第一次取出小球標號為a,第二次取出的小球標號為b.①記“ab=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在一個花瓶中裝有6枝鮮花,其中3枝山茶花,2枝杜鵑花和1枝君子蘭,從中任取2枝鮮花.
(1)求恰有一枝山茶花的概率;
(2)求沒有君子蘭的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩名同學參加“漢字聽寫大賽”選拔測試,在相同測試條件下,兩人5次測試的成績(單位:分)如下表:

(Ⅰ)請畫出甲、乙兩人成績的莖葉圖. 你認為選派誰參賽更好?說明理由(不用計算);
(Ⅱ)若從甲、乙兩人5次的成績中各隨機抽取一個成績進行分析,設(shè)抽到的兩個成績中,90分以上的個數(shù)為,求隨機變量的分布列和期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了參加2013年市級高中籃球比賽,該市的某區(qū)決定從四所高中學校選出人組成男子籃球隊代表所在區(qū)參賽,隊員來源人數(shù)如下表:

學校
學校甲
學校乙
學校丙
學校丁
人數(shù)




該區(qū)籃球隊經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊員代表冠軍隊發(fā)言.
(Ⅰ)求這兩名隊員來自同一學校的概率;
(Ⅱ)設(shè)選出的兩名隊員中來自學校甲的人數(shù)為,求隨機變量的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

據(jù)民生所望,相關(guān)部門對所屬服務(wù)單位進行整治行核查,規(guī)定:從甲類3個指標項中隨機抽取2項,從乙類2個指標項中隨機抽取1項.在所抽查的3個指標項中,3項都優(yōu)秀的獎勵10萬元;只有甲類2項優(yōu)秀的獎勵6萬元;甲類只有1項優(yōu)秀、乙類1項優(yōu)秀的提出警告,有2項或2項以上不優(yōu)秀的停業(yè)運營并罰款8萬元.已知某家服務(wù)單位甲類3項指標項中有2項優(yōu)秀,乙類2項指標項中有1項優(yōu)秀.
求:(1)這家單位受到獎勵的概率;
(2)這家單位這次整治性核查中所獲金額的均值(獎勵為正數(shù),罰款為負數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

學校為了使運動員順利參加運動會,招募了8名男志愿者和12名女志愿者,這20名志愿者的身高如下莖葉圖(單位:cm):若身高在180cm以上(包括180cm)定義為“高個子”,身高在180cm以下(不包括180cm)定義為“非高個子”,且只有“女高個子”才能擔任“禮儀小姐”.


 

 
 
8
16
5
8
9
 
 
8
7
6
17
2
3
5
5
6
7
4
2
18
0
1
2
 
 
 
 
1
19
0
 
 
 
 
(Ⅰ)用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,如果從這5人中隨機選2人,那么至少有1人是“高個子”的概率是多少?
(Ⅱ)若從所有“高個子”中隨機選3名志愿者,用表示所選志愿者中能擔任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.

(1)如果X=8,求乙組同學植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)Y的分布列和數(shù)學期望.(注:方差s2 [(x1)2+(x2)2+…+(xn)2],其中x1x2,…,xn的平均數(shù))

查看答案和解析>>

同步練習冊答案